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Abstract
Quantitative comparative social scientists have long worried about the performance of multilevel models
when the number of upper-level units is small. Adding to these concerns, an influential Monte Carlo
study by Stegmueller (2013) suggests that standard maximum-likelihood (ML) methods yield biased point
estimates and severely anti-conservative inference with few upper-level units. In this article, the authors
seek to rectify this negative assessment. First, they show that ML estimators of coefficients are unbiased in
linear multilevel models. The apparent bias in coefficient estimates found by Stegmueller can be attributed
toMonte Carlo Error and a flaw in the design of his simulation study. Secondly, they demonstrate how infer-
ential problems can be overcome by using restrictedML estimators for variance parameters and a t-distribu-
tionwith appropriate degrees of freedom for statistical inference. Thus, accuratemultilevel analysis is possible
within the framework that most practitioners are familiar with, even if there are only a few upper-level units.

Keywords: multilevel analysis; cross-national comparison; comparative politics; methodology; statistical inference;
maximum likelihood

Multilevel modelling has emerged as the standard tool for quantitative comparative research in
the social sciences.1 The predominant approach to estimating these models, which is also the
default in most statistical software packages, is to use likelihood-based methods. However, several
studies have raised serious concerns about the performance of these methods when there is a
small number of clusters (that is, upper-level units), as is often the case in cross-national research
in particular. Probably the most influential study on this topic is Stegmueller’s (2013) article How
Many Countries for Multilevel Modelling?2 According to the results of Stegmueller’s Monte Carlo

© Cambridge University Press 2020.. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution,
and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The writ-
ten permission of Cambridge University Press must be obtained for commercial re-use.

1Multilevel models as we understand them in this article are sometimes also referred to as ‘hierarchical (linear) models’ or
‘mixed (effects) models’. These models are widely used to analyse multilevel data where lower-level observations are ‘nested’
in upper-level units (a.k.a. groups or clusters); the simplest example is a two-level structure in which lower-level units (e.g.,
citizens, students) are nested in one type of upper-level unit (e.g., countries, schools). In such data, there will typically be
unexplained group-level variation in the level of the outcome variable and in the strength of lower-level relationships. In
multilevel models, this variation is captured by specifying (latent) group-level ‘random effects’ (a.k.a. ‘random intercepts’
and ‘random slopes’). Several textbooks provide thorough introductions to the approach (e.g., Snijders and Bosker (1999)
or Gelman and Hill (2006)). Steenbergen and Jones (2002) provide an accessible introduction in article format.

2As of 22 October 2018, Google Scholar recorded 417 and Web of Science 186 citations of this article, making it the most-
cited item to have appeared in the American Journal of Political Science in 2013 according to both sources.
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simulations, ML techniques yield biased point estimates and dramatically anti-conservative infer-
ence for the coefficients of contextual variables (for example, of country-level characteristics) in
few-cluster settings. That is, when there are fewer than 20 clusters, the point estimates of context
effects seem to systematically misrepresent the true effect sizes, and actual coverage rates of
confidence intervals are far below the nominal level, implying downward-biased p-values and
over-rejection of the null hypothesis of no effect. With regard to inferential problems, several
other simulation studies reach similar conclusions (see, for example, Bryan and Jenkins 2016;
Maas and Hox 2005; Meuleman and Billiet 2009; Moineddin, Matheson and Glazier 2007).
Thus the question of whether quantitative multilevel analysis requires a certain minimum
number of clusters has long haunted the social sciences.

In this article we seek to make three main contributions to this debate, taking Stegmueller’s
influential study as our point of departure. The first is to show that Stegmueller’s conclusions
about the bias of maximum-likelihood (ML) coefficient estimators are incorrect. Statistical theory
demonstrates that ML estimators provide unbiased estimates of (contextual and lower-level)
effects in linear multilevel models. In the generalized linear case (for example, multilevel probit),
substantial biases can occur when the size of the clusters is small, but in most social science appli-
cations this will not be a major concern. Our re-analysis of Stegmueller’s Monte Carlo evidence
supports these claims. Our second contribution is to demonstrate that likelihood-based techni-
ques can achieve accurate inference for contextual effects in few-cluster settings – if researchers
make two crucial and easily implemented improvements that we propose below. Monte Carlo
simulations show that these improvements work well even with upper-level samples of only
five cases, at least in the well-behaved set-up considered by Stegmueller. Our third and last con-
tribution is to highlight some technical, yet important, details that affect the validity of Monte
Carlo simulation evidence and that should be more widely known.

Stegmueller frames his findings in terms of comparing conventional ‘frequentist’ and Bayesian
approaches to statistical inference.3 His pessimistic assessment of (frequentist) likelihood-based
methods is paired with a recommendation to adopt Bayesian Markov Chain Monte Carlo
(MCMC) techniques in their stead. In contrast to Stegmueller, we do not want to claim that either
the frequentist or the Bayesian approach to multilevel analysis is generally superior to the other.
Our aim is merely to show how the problems of likelihood-based methods diagnosed by
Stegmueller can be solved within a frequentist framework. We believe this is important because
many practitioners are unfamiliar with Bayesian inference and may find MCMC techniques com-
putationally expensive and conceptually challenging.

The article is structured as follows. We first summarize statistical theory and previous work to
illustrate the conditions under which ML estimates of context effects are unbiased and to derive
promising approaches for improving statistical inference. In the subsequent section, we revisit
Stegmueller’s Monte Carlo simulation evidence. We show how his misleading conclusions con-
cerning the bias of ML estimates arose from a neglect of Monte Carlo error and certain technical
aspects of the simulation setup. Crucially, we further demonstrate that restricted maximum-
likelihood (REML) estimation, combined with a t-distribution with the appropriate degrees of
freedom, resolves the inferential deficiencies diagnosed by Stegmueller. In a further section, we
re-examine his empirical illustration (drawn from Steenbergen and Jones 2002) and find that
REML and Bayesian estimation produce virtually identical results in this ‘real-life’ setting, pro-
vided that our recommendations are followed. We conclude with a summary of our recommen-
dations and make suggestions for future research. In the interest of accessibility, we keep the
technical details to a minimum in the main article. Interested readers can find a more extensive
discussion of the theoretical and statistical underpinnings of our argument in the online
appendix.

3The subtitle of his article is ‘A Comparison of Frequentist and Bayesian Approaches’ and the subsection motivating his
analysis is entitled ‘Frequentist versus Bayesian Multilevel Models’.
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Theoretical Foundations of Accurate Estimation and Inference
Conditions for Unbiased Coefficient Estimates in Multilevel Models

A major conclusion of Stegmueller’s study is that ML estimates of the coefficients of contextual
(for example, country-level) variables are biased in multilevel models when there are few clusters.
This would mean that the estimated coefficients of contextual variables would systematically mis-
represent the true effect sizes (more technically, the coefficient estimates would not be equal to
their true values in expectation). The existence of such biases would provide strong grounds
against using conventional, likelihood-based techniques of multilevel analysis. However, it has
long been known that ML estimates of linear multilevel model coefficients are unbiased under
fairly general conditions (Kackar and Harville 1981). Here, we simply state this property and
emphasize that the relevant conditions include those of Stegmueller’s simulation study and
most practical applications; in particular, the result does not depend on the size of the upper-
or lower-level sample (see Appendix A.3 for the technical details).

The case of multilevel logistic regression and other generalized linear multilevel models (for
example, multilevel probit) is slightly more complicated. For these models, small-sample biases
do exist.4 Crucially, however, the relevant sample size is the one at the lower level.5 In most social
science applications – and especially in the case of comparative cross-national analysis that moti-
vated Stegmueller’s study – the requirement of a large lower-level sample will typically be met. It
is thus unlikely to account for any apparent biases in Stegmueller’s Monte Carlo analysis where
the minimum lower-level sample size was 2,500 cases (five upper-level units with 500 cases each).

Against this backdrop, we contend that Stegmueller’s Monte Carlo results cannot be attributed
to the inherent bias of ML estimators, an assertion that is further bolstered by the fact that he
found larger apparent biases in the linear case – the case where we can, based on statistical theory,
rule out any systematic bias. Our re-analysis below will indeed reconcile the Monte Carlo evi-
dence with the theoretical results noted in this subsection. But before proceeding to the simula-
tion results, we first turn to the issues of variance component estimation and statistical inference
for the coefficients of contextual variables.

Bias Correction for Variance Parameter Estimators: Restricted Maximum Likelihood

We have argued that, from the viewpoint of statistical theory, one should not be too concerned
about the potential biases of ML coefficient estimates in multilevel models: They are unbiased in
linear multilevel models. In addition, the finite sample biases in generalized linear multilevel mod-
els should not matter much in the many social science applications in which clusters are sufficiently
large. Yet ML estimates of variance parameters in multilevel models do have a small-sample bias
even if the model is linear. More importantly, this bias is a serious concern in practice because it
emerges when the number of upper-level units is small and does not vanish even if the lower-level
sample is very large. The direction of the bias is such that variances at the upper level may be
substantially underestimated. In case of a simple random-intercept model, this means that the esti-
mated variance of the random-intercept term will be smaller on average than the true value.

The fact that an ML estimator of a variance parameter exhibits finite sample bias is actually a
rather familiar phenomenon. Consider the ML estimator of the population variance σ2 of a nor-
mally distributed variable x based on a sample of n observations xi, …, xn:

ŝ2
ML =

1
n

∑n

i=1

(xi − �x)2.

4This is especially the case when approximation methods such as marginal quasi-likelihood or penalized quasi-likelihood
are used; see Breslow and Clayton (1993); Breslow and Lin (1995); Lin and Breslow (1996).

5In fact, ML coefficient estimates exhibit a small-sample bias even in the case of standard logistic or probit regression with-
out random effects. That is, coefficient estimates tend to be systematically and substantially larger (in absolute size) than the
corresponding true values when the sample size is small; see Firth (1993); Kosmidis and Firth (2009); Zorn (2005).

414 Martin Elff et al.

https://doi.org/10.1017/S0007123419000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0007123419000097


This estimator is well known to be biased downwards, with the bias being equal to − (1/n)σ2

(and thus decreasing with the sample size). In this case, the size of the bias is known exactly and
the following bias-corrected estimator can be used instead of the ML estimator:

ŝ2
corr =

1
n− 1

∑n

i=1

(xi − �x)2.

Another prominent example where ML estimation yields downward-biased variance estimates
is the ML estimator of the error variance in a conventional linear regression model, which is just
the mean squared residual. Thus it should not surprise that ML estimators of (upper-level) vari-
ance parameters in multilevel models are biased when the number of upper-level units is small.

While unsurprising, biases in the variance parameters can be very consequential even if the
variance estimates themselves are not of substantive interest. The reason is that they play a central
role in the computation of standard errors for coefficient estimates and related quantities, just as
the error variance plays a role in the computation of standard errors in conventional linear regres-
sion. If the variance parameters are underestimated, the standard errors of the coefficient
estimates will also be underestimated and statistical inference will be anti-conservative.

How, then, can one correct the downward bias of estimated variance parameters in multilevel
models? Unlike in the simpler case of the sample variance considered above, there is no generally
applicable way to calculate the exact magnitude of the bias in the context of multilevel modelling.
Fortunately, however, the restricted (or residual) maximum-likelihood estimator (REML) intro-
duced by Patterson and Thompson (1971) can at least greatly reduce the bias and even com-
pletely eliminate it in some situations. The construction and derivation of this modification is
technically quite involved. Details are available in Appendix Sections A.4 and A.6.

Suffice it to state here that the REML estimator for linear multilevel models has been available
as an option in standard software for quite some time, including in programs such as MLwiN, the
R packages nlme and lme4, Mplus, or Stata. REML and ML tend to produce similar coefficient
estimates, but REML typically yields considerably larger estimates of upper-level variances
when there are few clusters. As noted above, these differences in the estimated variance compo-
nents (that is, random-effects variances) can have important consequences for statistical inference
about the coefficients. As we will demonstrate in our re-analysis of Stegmueller’s Monte Carlo
evidence, the use of the simple, uncorrected ML estimator is indeed one of the reasons why
frequentist estimation showed such poor inferential performance in his study.

The REML estimator was developed by Patterson and Thompson (1971) for linear multilevel
models with normally distributed random effects, and it is not quite clear how the bias correction
generalizes to non-linear multilevel models andmultilevel models with non-normal random effects
(Breslow and Clayton 1993).6 The performance of Breslow and Clayton’s (1993) REML-type modi-
fication in the case of a multilevel probit model therefore is another topic of our simulation study.
More specifically, we will investigate a variant of the Breslow-Clayton approach that is also referred
to as extended quasi-likelihood (EQL) estimation (Lee and Lee 2012).

Improving Hypothesis Tests and Confidence Intervals: Using a t-Distribution with Appropriate
Degrees of Freedom

In order to obtain accurate hypothesis test results, p-values and confidence intervals, it is not
enough to have accurate parameter estimates and standard errors. One also needs to select the
appropriate sampling distribution for the test statistics. The standard Wald test statistic for the
statistical significance of coefficient estimates is the estimate divided by its standard error.
In the case of a linear regression model with n observations, k independent variables, a constant,
and normally distributed errors, this test statistic (also referred to as the t-statistic) is known to

6See also Drum and McCullagh (1993); Liao and Lipsitz (2002); Noh and Lee (2007).
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have a t-distribution with n− k− 1 degrees of freedom. For most statistical models other than
linear regression with normally distributed errors, the exact sampling distribution of this test
statistic is not known and can be approximated at best.

Software forML estimation usually reports p-values or confidence intervals based on the assump-
tion that the distribution of test statistics can be approximated by the standard normal distribution.
This assumption is motivated by the asymptotic normality of ML estimators: under certain condi-
tions, ML estimates can be shown to approach the standard normal distribution as the sample size
gets large.7 In the case of multilevel modelling, however, it may be verymisleading to rely on asymp-
totic normality to compute p-values and confidence intervals, in particular for the effects of context-
ual variables. For example, consider the case of a multilevel analysis of data clustered in 10
upper-level units of size 200 each. The effect of a contextual variable – a variable that represents
properties of the upper-level units and therefore does not vary within these units – on a lower-level
outcome can be estimated using a multilevel model. An alternative would be to estimate a group-
level (for example, a country-level) regression of the group means of the outcome variable on the
group means of the independent variables (Heisig, Schaeffer and Giesecke 2017; Lewis and
Linzer 2005). Such a group-level (or ‘means-as-outcomes’) regression would not sacrifice any infor-
mation about the relationship of interest: All information contributed by the 200 observations
within each upper level will be captured by the groupmeans, because the contextual variable cannot
explain within-group differences in the outcome.8

What is the sampling distribution of the Wald statistic for the coefficient of the contextual pre-
dictor in the group-level regression? Provided that the group means are normally distributed,
elementary probability theory implies that the Wald statistic of the contextual predictor follows
a t-distribution with 10 – 2 = 8 degrees of freedom. This simple analogy suggests that the
t-statistic for the contextual predictor in the corresponding multilevel model might also follow,
at least approximately, a t-distribution with 8 degrees of freedom rather than a standard normal
distribution.9 A similar argument can be made for the case of cross-level interactions: For a multi-
level model with a cross-level interaction between a contextual and an individual-level independ-
ent variable, the coefficient of the interaction term is conceptually related to the coefficient on the
contextual variable in a group-level (‘slopes-as-outcomes’) regression where the outcomes are the
within-group slopes of the individual-level variable.10 This correspondence again suggests that a
t-distribution with 10 – 2 = 8 degrees of freedom should be assumed for the test statistic of the
cross-level interaction term. It further suggests that this distribution should also be assumed
for the main effect of the lower-level variable included in the interaction, because this term cor-
responds to the constant term in the group-level slopes-as-outcomes regression. More generally,
these considerations motivate what we call the ‘m− l− 1 rule’, where m refers to the number of
upper-level units and l refers to the number of contextual variables, that is, to the number of
observations and independent variables in a group-level approximation of the contextual rela-
tionships in a multilevel model, respectively.

Several textbooks on multilevel modelling mention the m− l − 1 approximation (for example,
Raudenbush and Bryk 2002), but it does not seem to be widely used in practice. In particular,
Stegmueller relied on the normal approximation throughout his study. The same holds for

7On the conditions for asymptotic normality, see Lehmann and Casella (2011).
8A simple (unweighted) group-level regression would ignore one potentially important piece of information – the extent of

within-cluster (i.e., lower-level) errors in the dependent variable. Due to differences in this within-cluster variability, some
group means may be estimated more reliably than others. Lewis and Linzer (2005) therefore argue that it will usually be pref-
erable to estimate the group-level regression using a feasible generalized least squares approach that gives greater weight to
more reliable estimates.

9The analogy further suggests that the t-statistic for the overall constant approximately follows this distribution (because it,
too, can be seen as a parameter in the group-level regression). We do not pursue this issue further, however, because the
overall constant is almost never of substantive interest.

10For details, see Lewis and Linzer (2005); Heisig, Schaeffer and Giesecke (2017).
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other studies that have found frequentist inference to be anti-conservative in few-cluster settings
(Bryan and Jenkins 2016; Maas and Hox 2005; Moineddin, Matheson and Glazier 2007). It seems
quite likely that the use of the normal approximation is a major reason why these studies reached
such sobering conclusions concerning the accuracy of frequentist inference. When the number of
clusters is small, a t-distribution selected according to the m− l − 1 rule will lead to much larger
p-values and wider confidence intervals than the assumption of asymptotic normality. For
example, the critical values for a two-sided test at the 5 per cent significance level are ±1.96
based on the normal, yet ±2.31 based on a t-distribution with 8 degrees of freedom. The fact
that these values are also used to identify the limits of 95 per cent confidence intervals implies
that the interval based on a t-distribution with 8 degrees of freedom will be approximately
1.18 times as wide as the normal-based alternative.

An alternative to the m− l− 1 rule is to use one of several other approximations of the dis-
tribution of test statistics that have been proposed in the statistical literature (for overviews, see
Li and Redden 2015; Schaalje, McBride and Fellingham 2002). One of the most promising
approaches involves a generalization of Satterthwaite’s (1946) method, as developed for single-
constraint t-tests by Giesbrecht and Burns (1985) and extended to multiple-constraints F-tests
by Fai and Cornelius (1996). The most advanced approach is the approximation of Kenward
and Roger (1997), yet this method is computationally more demanding than the
Giesbrecht-Burns approach and leads to highly similar results for single-constraint tests, which
include standard t-tests of the null hypothesis that a given parameter equals zero (Li and
Redden 2015). Since the latter type of test is by far the most common in the social sciences,
we focus on the Giesbrecht-Burns method in this article. In keeping with widespread practice,
we simply refer to the method as the Satterthwaite method/approximation (rather than the
Giesbrecht-Burns method) hereafter. This is also the label most commonly used for implementa-
tions of the method in statistics packages, including SAS, the R package lmerTest (Kuznetsova,
Brockhoff, and Christensen 2017), and Stata (since version 14).

A crucial advantage of the Satterthwaitemethod is that it can provide approximate degrees of free-
dom for complex multilevel designs (for example, cross-classified structures) where the m− l− 1
rule is not applicable. But when dealing with the simple hierarchical structures that predominate
in the social sciences (and that are the focus of Stegmueller’s analysis) the m− l− 1 heuristic may
perform quite well and is appealingly simple to implement. We describe in the Appendix how
this rule can be applied in practice, using current statistical software. Moreover, the rule can be read-
ily used in the case of generalized linear multilevel models such as multilevel logit and probit. The
Satterthwaite approximation is not currently available in all major statistics packages. For generalized
linear multilevel models it is, to our knowledge, only available in SAS as part of the GLIMMIX
procedure, but it may become available for R or Stata in the near future.

In sum, the above discussion points to another possible explanation for the inferential problems
detected in Stegmueller’s simulation study. Not only did Stegmueller use ML rather than REML
estimation, which resulted in downward-biased standard errors; he also relied on the assumption
of normally distributed test statistics. The above discussion suggests that a heavier-tailed
t-distribution with limited degrees of freedom – approximated using the m − l− 1 rule or the
Satterthwaite method – may be more appropriate for conducting inference about coefficients
that effectively describe group-level relationships. To investigate the importance of this suggestion
and of the other claims made above, we now turn to our Monte Carlo simulation study.

Improved Estimation and Inference in Likelihood-Based Multilevel Analysis:
Monte Carlo Evidence
We now revisit Stegmueller’s influential Monte Carlo analysis. We first demonstrate that the bias
he finds in ML parameter estimates is spurious. It can be attributed to an insufficient number of
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simulated data sets in combination with the choice of a random number seed that accidentally
produces extreme results. Moreover, Stegmueller repeatedly started the Monte Carlo simulations
for each experimental condition with the random number seed 12345, thereby inadvertently cre-
ating a misleading impression of systematic bias. In the second step of the Monte Carlo analysis,
we show that using REML estimation and the t-distribution with appropriate degrees of freedom
resolves the inferential problems diagnosed by Stegmueller.

Like Stegmueller, we concentrate on the case where the intra-class correlation (ICC) equals
0.10. Moreover, we focus on the case where the contextual variable has a simple additive effect
on the lower-level outcome (a ‘direct context effect’ in the terminology of Heisig, Schaeffer
and Giesecke 2017). Additional results, presented in Appendix B.2, show that all results similarly
hold for the three constitutive terms of a cross-level interaction (that is, the interaction term and
the main effects of the lower- and upper-level predictors). The additional results also show that
our conclusions do not change when we consider ICCs of 0.05 and 0.15.

We present results in the same fashion as Stegmueller (2013) to facilitate comparisons, but
additionally visualize Monte Carlo sampling variability via 95 per cent confidence intervals. As
demonstrated below, it is important to consider sampling variability in Monte Carlo studies.
The basic idea of Monte Carlo analysis is to learn about the properties of an estimator by apply-
ing it to a large number of simulated data sets, sampled from a known data-generating process
(DGP) with random components. For example, investigating the potential bias of an estimator
would involve comparing the average point estimate across many simulated data sets to the
true value in the underlying DGP. For an unbiased estimator, this average will approach the
true value as the number of simulations gets large. Intuitively, it would be premature to dismiss
an estimator as biased just because it happens to be off target in one or two simulated data sets.
This is because Monte Carlo results are subject to sampling error, much like conventional
parameter estimates. This statistical uncertainty needs to be taken into account when drawing
conclusions from Monte Carlo experiments. Stegmueller’s failure to do so, and the relatively
small number of replications in his study (1,000), seem to be the major reasons why he drew mis-
leading conclusions concerning the bias of ML-based estimators of multilevel model parameters.

Figure 1 visualizes the results concerning the bias of point estimates. We conducted this part of
the analysis using a free trial version of Mplus and Stegmueller’s publicly available replication
files.11 We focus on results for the linear model in the left panel. Conclusions are similar for
the probit case in the right panel. Our exact replication (black triangles) obviously reproduces
Stegmueller’s findings. ML point estimates appear to suffer from systematic upward bias, espe-
cially when the number of clusters is 15 or less. However, we also find that the estimated biases
are subject to considerable Monte Carlo uncertainty, which Stegmueller did not report. That said,
the result that linear multilevel models produce positively biased point estimates is significant at
the 5 per cent level when the number of clusters is 15 or less (that is, the 95 per cent confidence
intervals do not include zero). Appendix Figure B.1 shows that Stegmueller’s original results were
never significant for any of the three constitutive terms of the cross-level interaction (that is, the
main effects of the lower- and upper-level variables and their interaction).

Given these additional findings and the theoretical results from the previous section, one
might suspect that the statistically significant Monte Carlo estimates in Figure 1 are Type-I errors
(that is, that they belong to the 5 per cent of cases where a correct null hypothesis of no bias is
rejected). To investigate this possibility, we separately introduce two modifications that should
not qualitatively change the results if they were indicative of systematic upward bias, but affect
them in foreseeable ways if the opposite holds true. The dark grey line with circles shows results
based on 10,000 instead of 1,000 replications (leaving everything else the same). The increased
Monte Carlo sample size systematically shrinks the estimated magnitude of parameter bias
towards zero, just as one would expect if the large deviations found in the original analysis

11We used the replication files available on the American Journal of Political Science dataverse (Stegmueller 2012).

418 Martin Elff et al.

https://doi.org/10.1017/S0007123419000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0007123419000097


were due to chance. However, the direction of the estimated biases remains consistently positive
(and statistically significant in the 5 and 15 cluster conditions).

Our second modification swipes this pattern away. Stegmueller repeatedly used the seed 12345
to initialize Monte Carlo sampling for each single experimental condition. A random number
seed initializes a specific pseudo-random sequence of numbers. While the sequence ‘behaves’
like a truly random sequence statistically, a given random number seed, such as 12345, always
initializes the exact same sequence. Specifying a random number seed thus guarantees the repro-
ducibility of results, but it comes at the risk of creating unwanted interdependencies and repeat-
edly producing similar chance findings by using non-independent seeds. This indeed seems to be
the reason why Stegmueller’s simulation results are suggestive of systematic upward bias in the
parameter estimates, especially for the linear case. To illustrate this, our second modification
replaces the repeated use of the seed 12345 with different and independent seeds for each experi-
mental condition.12 The grey squared line shows that any systematic pattern of positive bias
disappears when we use a different random number seed for each condition (like the original

Figure 1. Performance of ML point estimates of upper-level covariate effects in multilevel linear and probit models
Note: The figure displays relative biases of ML point estimates (in percent of the true effect size). Vertical lines depict 95 per cent Monte
Carlo confidence intervals for these results. The horizontal zero line denotes the reference of no bias. Black triangles replicate the
results presented in the left column (‘Estimate’) of Figure 2 on page 754 in Stegmueller (2013). We additionally present two modifica-
tions of Stegmueller’s analysis. The first (black circles) increases the number of replications from 1,000 to 10,000, leaving everything else
the same. The second (grey squares) follows Stegmueller in using only 1,000 replications, but specifies different random number seeds
for the different experimental conditions. The Monte Carlo confidence intervals are computed on the base of the standard deviation of
the estimates across Monte Carlo replications divided by the square root of the Monte Carlo sample size (the number of simulation
replications), and the 2.5 and 97.5 percentiles of the standard normal distribution (i.e. −1.96 and +1.96).

12We generated the random number seeds for the different experimental conditions using www.random.org, an online
resource that exploits atmospheric noise to generate numbers that are truly random (rather than pseudo-random). The
exact values of the seeds are documented in the Mplus replication files. Alternatively, one could set a random seed only
once and successively simulate all experimental conditions. Yet, Stegmueller’s replication files do not allow such a setup,
as each experimental condition is based on a separate Mplus ‘.inp’ file. In another re-examination implemented in R, we
ran the simulations in this alternative way. The results are similar to the ones based on independent seeds which are displayed
here. They are available from the authors upon request.
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analysis, this modification uses 1,000 simulated data sets per condition). In addition, all simulated
‘biases’ are statistically insignificant and more moderately sized than in the original analysis.

In sum, the impact of the two modifications on the simulation results is fully consistent with,
and thus substantiates, the theoretical result that ML point estimates are unbiased. Our analysis
also illustrates how certain technical issues can crucially affect the validity of Monte Carlo evidence.

To illustrate how the inferential problems reported by Stegmueller and others (for example,
Bryan and Jenkins 2016; Maas and Hox 2005) may be overcome, we re-examine his simulations
using R because Mplus does not provide an implementation of the Satterthwaite approximation
(for details on the R implementation, see Appendix B.1). In addition to using a different software
package, we also specified independent random number seeds for the different experimental
conditions and ran 5,000 rather than 1,000 replications per condition.13 In all other respects,
the following simulations are identical to Stegmueller’s.

Figure 2 shows how well REML estimators can improve on ML estimators of variance para-
meters. Stegmueller did not report Monte Carlo results for the variance components, so these
results have no correspondence in his article or the accompanying online appendix. We show
these results here because they forcefully demonstrate the importance of using REML rather
than ML estimation in few-cluster settings. Whereas ML estimates are increasingly biased as
the number of upper-level units declines, REML generally achieves a tremendous degree of
bias reduction. The extended quasi-likelihood implementation of REML-like estimation for pro-
bit models appears to be slightly less accurate than REML in the linear case, but also performs
very well.14 In any case, the potential inaccuracies are negligible compared to the expected
downward bias of ML estimates.

Figure 2. Performance of likelihood-based estimators of random intercept variances in multilevel linear and probit models
Note: The figure displays relative bias (in percent of the true parameter size) in variance estimates for the random intercept. Vertical
lines depict 95 per cent confidence intervals. The horizontal zero line denotes the reference of no bias. The Monte Carlo sample
size is 5,000. The confidence intervals are constructed analogously to those in Figure 1.

13See note 1.
14We used the R package hglm by Rönnegård, Alam and Shen (2015) for estimation, which is based on work by Lee and

Lee (2012); for details, see Appendices A.6 and B.1.
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Figure 3 shows the extent of undercoverage for two-sided 95 per cent confidence intervals. The
figure shows by how much (in percentage points) the actual coverage rate across the 5,000 replica-
tions (that is, the proportion of confidence intervals that include the true value of the parameter)
differs from the nominal coverage rate of 95 per cent. The optimal value is zero, indicating that the
actual coverage rate of the confidence intervals equals the nominal rate. To represent Monte Carlo
uncertainty without sacrificing readability, we include dashed horizontal lines that indicate the
limits of a two-sided 95 per cent confidence interval for a random variable that has a binomial dis-
tribution with success probability p(1) = 0.95 and size parameter n = 5,000. Non-coverage estimates
that fall between the two dashed lines are not significantly different from zero at the 5 per cent level.
As before, we focus on the linear case in the left panel, but the results are highly similar in the probit
case (right panel).

The dashed line with hollow squares shows results based on ML estimation and the normal
approximation; it nicely replicates Stegmueller’s finding of confidence intervals that are much
too narrow, particularly for small upper-level samples. If Stegmueller had used REML instead
of ML, the extent of the problem would have been much smaller. The dashed line with hollow
circles shows a maximum bias of about −9.2 percentage points rather than the −17.8 percentage
points found for the combination of ML estimation with the normal distribution. Constructing
confidence intervals from the appropriate t-distribution, however, seems even more important
than using REML. The solid line with filled squares shows that the maximum bias declines to
a mere −3.9 percentage points when we stick with ML estimation but construct confidence inter-
vals based on a t-distribution with m − l− 1 degrees of freedom. Yet, the most important result of

Figure 3. Performance of likelihood-based confidence intervals for upper-level covariate effect in multilevel linear and pro-
bit models
Note: The figure shows percentage point deviations of actual coverage rates from the nominal value of 95 per cent. The horizontal zero
line denotes the reference of accurate coverage (i.e., actual equals nominal coverage rate) based on 5,000 Monte Carlo replications. The
dashed horizontal lines indicate 95 per cent test intervals. For an accurate estimator of the 95 per cent confidence interval (i.e., one that
has an actual coverage rate of 95 per cent), the estimated actual coverage rate should fall into the test interval 95 per cent of the time.
In this sense, estimated coverage rates falling outside the test interval constitute statistically significant evidence against an accurate
coverage rate. The test intervals are constructed to range from the 2.5 percentile to the 97.5 percentile (thus containing 95 per cent of
the probability mass) of a binomial distribution with success probability p(1) = 0.95 and size parameter n = 5,000. This figure corre-
sponds to the right-hand panel ‘CI non-coverage’ of Figure 2 on page 754 in Stegmueller (2013).
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our analysis is that if we combine REML estimation with the m− l− 1 rule, inference is almost
perfectly accurate. A few readily implementable choices can thus effectively address the inferential
problems diagnosed by Stegmueller and others. Notably, the right panel in Figure 3 shows that
the combination of (REML-like) EQL estimation with the m − l− 1 rule also leads to correct stat-
istical inference in the multilevel probit case.

Figure 4 compares the performance of the m− l− 1 rule and the Satterthwaite approximation
for the linear case.15 Reassuringly, both methods perform very similarly. In all cases, the devia-
tions of the actual from the nominal coverage rate of 95 per cent are close to the ideal value
of zero and can reasonably be attributed to Monte Carlo error (note the much larger scale of
Figure 4 compared to Figure 3). Appendix Figure B.4 shows that this result does not change if
we use a more complex data-generating process that includes an additional lower-level predictor
with substantial between-cluster variance. Our analysis thus suggests that both the m− l− 1 rule
and the Satterthwaite approximation perform well in practice. In combination with REML, they
can fully resolve the inferential deficiencies diagnosed by Stegmueller. That said, future research
should investigate their performance under more complicated data-generating processes as
encountered in applied research. As a first step in this direction, we now revisit the empirical
example from Stegmueller’s study.

An Empirical Application: Estimating The Determinants of Support for the
European Union
As a first step towards evaluating our recommendations under more complex and realistic
conditions, we follow Stegmueller and replicate Steenbergen and Jones’ (2002) model of citizen
support for the European Union (EU). Support for the EU is modelled as a function of a
country’s trade balance and tenure in the union, with GDP and monetary inflation as controls.
For trade balance and inflation, Stegmueller finds that ML estimation leads to a rejection of the

Figure 4. Performance of degrees of freedom
approximations for the sampling distribution
of test statistics in multilevel linear models
Note: The figure shows percentage point deviations
of actual coverage rates from the nominal value of
95 per cent. The horizontal zero line denotes the ref-
erence of accurate coverage (i.e., actual equals nom-
inal coverage rate) based on 5,000 Monte Carlo
replications. The dashed horizontal lines indicate 95
per cent test intervals that are constructed in the
same way as in Figure 3. This figure has no corres-
pondence in Stegmueller (2013).

15We are not aware of an R implementation of the Satterthwaite approximation for multilevel probit models. To our
knowledge, SAS is currently the only major statistics package that provides the approximation for multilevel probit regression
and other generalized linear multilevel models.
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null hypothesis of no effect, whereas credible intervals based on a more demanding Bayesian
Markov Chain Monte Carlo estimator include zero. The interpretation of this result in the context
of Stegmueller’s simulation evidence is that standard ML-based inference is anti-conservative and
misleading. It leads to the rejection of null hypotheses that should have been retained and ultim-
ately to ‘different theoretical conclusions’ (Stegmueller 2013, 757) than a Bayesian approach.

Figure 5 replicates Stegmueller’s results and adds REML estimates as well as 95 per cent
confidence intervals based on the normal distribution (thick lines) and on the t-distribution
with m− l− 1 degrees of freedom (thin antlers). This practical example yields two main results.
First, point estimates based on ML, REML and Bayesian MCMC are almost identical and only
differ due to the randomness of MCMC. Secondly, our preferred method of assessing statistical
uncertainty in the frequentist framework – using the REML estimator and the t-distribution with
m− l − 1 (in this case: 14 – 4 – 1 = 9) degrees of freedom – yields confidence intervals that are
hardly distinguishable from the corresponding Bayesian credible intervals.

We take the results of this ‘real-life example’ as evidence that our recommendations will con-
siderably improve the accuracy of frequentist inference in actual applications, which admittedly
tend to be more complex than the stylized Monte Carlo DGPs that we borrowed from
Stegmueller. Unlike in the Monte Carlo analysis, we cannot know if frequentist inference is accur-
ate in the present setting, but the similarity to the Bayesian results is striking. Nevertheless, future
research should investigate the performance of our recommendations using further Monte Carlo
simulations with more complex setups.

Conclusions
A widely read and cited article by Stegmueller has raised serious concerns about the performance
of standard likelihood-based methods of estimating multilevel models when the number of

Figure 5. Country-level determinants of support for the European Union
Note: The figure displays point estimates and their 95 per cent confidence or credible intervals. For (restricted) ML estimates, thick lines
represent 95 per cent confidence intervals based on the normal distribution, and thin antlers represent intervals based on the
t-distribution with m − l− 1 degrees of freedom. Sample size: 10,777 individuals, 14 countries. This figure corresponds to Figure 8
on page 758 in Stegmueller (2013).
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clusters is small. Stegmueller claims that these methods produce biased estimates of the coeffi-
cients of contextual variables, and that inferences about contextual effects may be strongly
anti-conservative, potentially leading to an unjustified rejection of the null hypothesis of no effect.
Especially with respect to statistical inference, several other studies have drawn similar conclu-
sions (for example, Bryan and Jenkins 2016; Maas and Hox 2005).

In this article we have demonstrated that this pessimistic assessment of likelihood-based esti-
mators of coefficients in multilevel models cannot be upheld. First, analytical results from the
statistical literature indicate that ML estimates of context effects in linear multilevel models are
unbiased – irrespective of the number of clusters and irrespective of whether ML or REML esti-
mation is used. For generalized linear multilevel models such as multilevel probit, biases are pos-
sible when the sizes of the clusters are small, resulting in small lower-level samples. However,
small lower-level sample sizes are rare in the country-comparative setting that motivated
Stegmueller’s analysis. Consistent with these assertions, our re-analysis of his Monte Carlo
experiments provides no evidence of biased parameter estimates for either linear or generalized
linear multilevel models.

Secondly, we have demonstrated that even with very few clusters, accurate inference for context-
ual effects is possible within the standard estimation framework, provided that two recommenda-
tions are followed. The first is to use REML estimation or a suitable extension for generalized linear
multilevel models. The second is to approximate the distribution of the Wald test statistic for con-
textual effects using a t-distribution with the appropriate degrees of freedom rather than the stand-
ard normal distribution. Importantly, our results suggest that the appropriate degrees of freedom
can be approximated quite easily, at least for simple hierarchical data structures. In our simulations,
the m − l− 1 rule – where m is the number of clusters and l is the number of predictors in the
(implicit) upper-level regression – performed very well in both the linear and probit cases. In prac-
tice, validating the m− l− 1 heuristic against the more computationally demanding Satterthwaite
and Kenward-Roger approximations certainly will not hurt; we strongly recommend it for cross-
classified and other non-hierarchical data structures. Yet if this is not feasible, our results suggest
that the m − l− 1 rule – combined with REML estimation and its extensions to generalized linear
multilevel models – will go a long way towards achieving accurate inference. Taken together, these
insights resolve lasting concerns of quantitative comparativists in political science and adjacent
fields and have important implications for research practice.

In his study, Stegmueller recommends Bayesian MCMC estimation as a superior alternative to
(frequentist) likelihood-based methods. Our results indicate that this claim of superiority is over-
stated. If applied in the right way, likelihood-based estimation performs on par with MCMC esti-
mation in terms of both bias and statistical inference. Many applied researchers will likely
consider this good news, as they have been trained primarily in the traditional paradigm and
find MCMC procedures computationally costly and difficult to interpret. That likelihood-based
and Bayesian methods, when implemented appropriately, yield very similar results for multilevel
models with few but large clusters should not come as a surprise. While the two approaches have
different underlying philosophies, they often lead to similar results if they are both applicable to
the problem at hand. Both ML estimators and Bayes estimators are consistent for correctly spe-
cified models – that is, they approach the true parameter values as the sample size gets large.16 For
small samples, ML estimators are often biased,17 but so are Bayes estimators.18 Finally, likelihood-
based methods can often be (re)interpreted in Bayesian terms.19

16For more on the consistency of ML estimators, see Casella and Berger (2002, 467ff). For details on the consistency of
Bayes estimators, see Gelman et al. (2003, 106ff).

17See, e.g., Firth (1993) and Kosmidis and Firth (2009).
18See Casella and Berger (2002, 368) or Lehmann and Casella (2011, 234).
19For example, ML estimators can be seen as posterior modes with flat prior distributions. Bias reduction techniques, such

as Firth’s (1993) penalized ML estimator, can be seen as Bayes estimators with Jeffreys priors. An anonymous reviewer also
suggested a Bayesian interpretation of restricted ML estimators. We discuss this interpretation in Appendix A.5.
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While we have shown that certain readily available choices can considerably improve the
accuracy of likelihood-based inferences, we nevertheless would like to emphasize that the pro-
blems identified by Stegmueller and others must be taken seriously. Many popular statistics
packages default to the estimation approaches and statistical assumptions that these simulation
studies (and ours) find to result in anti-conservative inference. For example, both Stata and
Mplus rely on ML estimation and the normality assumption by default. We therefore suspect
that many published multilevel analyses do indeed suffer from inaccurate statistical inference,
although we cannot know for sure without detailed inspection of the individual studies.

Our analysis also carries three important lessons for the design of Monte Carlo studies. First,
producers and readers should pay attention to Monte Carlo sampling error and communicate the
uncertainty of their simulation results. Secondly, one should be wary of Monte Carlo studies with
a small number of replications. Finally, repeatedly starting Monte Carlo simulations of different
experimental conditions from the same random number seed may introduce interdependencies
among experimental conditions and create seemingly systematic patterns, as it did in
Stegmueller’s finding of apparently biased coefficient estimates. We suspect that many other stud-
ies suffer from similar issues and hope that our analysis sensitizes both the producers and readers
of Monte Carlo simulations to the importance of such technicalities.

An important remaining task is to study data-generating processes that are more complex and
demanding than those investigated here. The results of Bryan and Jenkins (2016) suggest that
REML falls short under more complex conditions, at least when it comes to the estimation of
variance components, and one may also wonder how well degrees of freedom can be approxi-
mated in such situations. Again, it is encouraging that likelihood-based estimation, if conducted
in accordance with our recommendations, performs similarly to a Bayesian MCMC estimator in
the replication of Steenbergen and Jones’ (2002) model of citizen support for the EU. Yet there is
no guarantee that this good performance carries over to all of the diverse settings that are studied
by social scientists.20 Future simulation studies should therefore investigate more complicated
data-generating processes.

Supplementary material. Data replication sets are available at https://doi.org/10.7910/DVN/CMMQRK and online appen-
dices are available at https://doi.org/10.1017/S0007123419000097
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