Summarizing data tables¶
Here we use data from the British Election Study 2010. The data set bes2010feelings.RData is prepared from the original available at https://www.britishelectionstudy.com/data-object/2010-bes-cross-section/ by removing identifying information and scrambling the data.
load("bes2010feelings.RData")
library(data.table)
setDT(bes2010feelings)
Mean <- function(x) mean(x,na.rm=TRUE)
bes2010feelings[,.(Brown=Mean(flng.brown),
Cameron=Mean(flng.cameron),
Clegg=Mean(flng.clegg),
N=.N)]
Brown Cameron Clegg N
1 4.406517 5.162484 4.850231 5010
bes2010feelings[,.(Brown=Mean(flng.brown),
Cameron=Mean(flng.cameron),
Clegg=Mean(flng.clegg),
N=.N),
by=.(wave,region)]
wave region Brown Cameron Clegg N
1 Pre England 4.092674 5.284810 4.618690 1159
2 Pre NA 4.507143 4.929870 4.426573 437
3 Pre Scotland 5.395000 4.502591 4.405229 207
4 Pre Wales 4.328244 4.774194 4.592233 132
5 Post England 4.140990 5.441454 5.160313 2175
6 Post Scotland 5.510769 4.539075 4.513793 665
7 Post Wales 4.307692 4.855895 4.814480 235
- R file: summarizing-data-tables.R
- Rmarkdown file: summarizing-data-tables.Rmd
- Jupyter notebook file: summarizing-data-tables.ipynb
- Interactive version of the Jupyter notebook (shuts down after 60s):
- Interactive version of the Jupyter notebook (sign in required):