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Models for categorical dependent variables, such as turnout, party choice, or partisan-

ship have eluded scholars for decades. Their parameters are often difficult to interpret

and do not lend themselves easily to an intuitive understanding. Yet, the concepts and

patterns of inference that work will within the framework of linear regression cannot

easily transferred to models for categorical dependent variables. The paper discusses two

instances where attempts to do this leads to misleading methodological recommenda-

tions.

It should be noted that in its current state the paper is quite incomplete. Its argument-

ation is currently rather formal-mathematical, while its practical and empirical implica-

tions need to be further fleshed out.

Models for categorical dependent variables, such as turnout, party choice, or partisanship

have eluded scholars for decades. Should the coefficients be reported and interpreted, or

are odds ratios, marginal effects, discrete changes in probabilities preferable? Can there be

statistically significant interaction effects without the presence of product terms? How is it

possible to make sense of multinomial logit models, if their coefficients depend on the choice

of the response category? Several scholars have published methodological papers concerned

with these questions, but not all of these have the potential to help with the confusion of
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researchers who intend to apply models for categorical responses. In some instances the

proposed cure is even worse than the disease. Yet much of the confusion about models for

categorical dependent variables and other non-linear models can be avoided by not asking

too them, by more strictly adhering to an internally consistent terminology, and heeding the

distinction between model specification, estimation, and generating quantities of interest.

These issues are discussed with regards to two more or less recent papers, one already

widely cited, the other published in a journal with high visibility. The first is Berry et al.’s

“Testing for Interaction in Binary Logit and Probit Models: Is a Product Term Essential?”

(Berry et al. 2010). The other is Paolino’s “Predicted Probabilities and Inference with

Multinomial Logit” Paolino (2020). The common ground of both papers is that they try

go give priority to quantities of interest that appear to have a straightforward intuitive

interpretation and that generalise concepts that work well in the framework of linear

regression over quantitative and concepts that are straightforward aspects of models of

categorical dependent variables but are difficult to interpret. In both cases, these priorities

leads to misleading recommendations with regards to inferences derived from these models.

1 Product terms and interaction effects in logit and
probit models

Within the context of linear regression, interaction effects can be defined as the amount

to which first differences in expected values of a dependent variable 𝑋 with respect to an

independent variable change with the values of another variable 𝑍 . In this interpretation, an

interaction effect is identical to the cross-variable second-difference ratio:

Δ2𝜇(𝑥, 𝑧)

Δ𝑥Δ𝑧
=

𝜇(𝑥, 𝑧) − 𝜇(𝑥, 𝑧) − [𝜇(𝑥, 𝑧) − 𝜇(𝑥, 𝑧)]

(𝑥2 − 𝑥1)(𝑧2 − 𝑧1)

where

𝜇(𝑥, 𝑧) = E(𝑌 |𝑋 = 𝑥, 𝑍 = 𝑧)

for some 𝑥1 < 𝑥2, 𝑧1 < 𝑧2. Due to the mean value theorem of calculus, the second-difference

ratio with respect to 𝑥1,𝑥2,𝑧1,𝑧2 is equal to the second derivative

𝜕2𝜇(𝑥, 𝑧)

𝜕𝑥𝜕𝑧

|
|
|
|𝑥=𝑥∗,𝑧=𝑧∗

for some 𝑥∗ and 𝑧∗ with 𝑥1 ≤ 𝑥∗ ≤ 𝑥2 and 𝑧1 ≤ 𝑧∗ ≤ 𝑧𝑥2
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In a linear regression model without a product term in 𝑋 and 𝑍 , that is,

𝜇(𝑥, 𝑧) = 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + ⋯

it is easy to see that the first derivatives of 𝜇(𝑥, 𝑧) in 𝑥 and 𝑧, the marginal effects, are constant

and equal to the coefficients

𝜕𝜇(𝑥, 𝑧)

𝜕𝑥
= 𝛽𝑥

𝜕𝜇(𝑥, 𝑧)

𝜕𝑧
= 𝛽𝑧

while the second derivative vanishes:

𝜕2𝜇(𝑥, 𝑧)

𝜕𝑥𝜕𝑧
= 0

In a linear regression model with a product term in 𝑋 and 𝑍

𝜇(𝑥, 𝑧) = 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 + ⋯

(where 𝛽𝑥𝑧 ≠ 0)the marginal effects are linear functions

𝜕𝜇(𝑥, 𝑧)

𝜕𝑥
= 𝛽𝑥 + 𝛽𝑥𝑧𝑧

𝜕𝜇(𝑥, 𝑧)

𝜕𝑧
= 𝛽𝑧 + 𝛽𝑥𝑧𝑥

while the second “cross-derivative”, which henceforth is referred to as the marginal interac-
tion, equals the coefficient of the product term:

𝜕2𝜇(𝑥, 𝑧)

𝜕𝑥𝜕𝑧
= 𝛽𝑥𝑧.

This is of course well known: that the presence of a product term is a necessary and

consistent condition for the presence of an interaction effect. It should be noted that a model

without an interaction term in 𝑋 and 𝑍 can be viewed as a special case of a model with an

interaction term where the coefficient of this term is equal to zero, i.e. 𝛽𝑥𝑧. Therefore the

following discussion uses equations involving interaction terms and treats the “absence” of

an interaction term as the special case 𝛽𝑥𝑧.

The three most popular models for binary dependent variables are linear probability

models, logistic regression (aka logit) models, and probit models.
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A linear probability model with independent variables 𝑋 and 𝑍 takes the form

𝜋(𝑥, 𝑧) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 for 0 < 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 < 1

0 for 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 ≤ 0

1 for 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 ≥ 1

(again assuming 𝛽𝑥𝑧 ≠ 0). Where 𝜋(𝑥, 𝑧) = Pr(𝑌 = 1|𝑋 = 𝑥, 𝑍 = 𝑧) = E(𝑌 |𝑋 = 𝑥, 𝑍 = 𝑧)

It seems that the nice equivalence between the existence of interaction effects and the

presence of product terms carries over from linear regression models to linear probability

models. However, this applies only at most as long as 0 < 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 < 1. For

𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 = 0 and 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 = 1 first and second derivatives (and

the corresponding difference ratios) are undefined, while for 𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 < 0 and

𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧 > 1 all derivatives vanish (are equal to zero).

Both logit and probit models with independent variables 𝑋 and 𝑍 take the form

Pr(𝑌 = 1|𝑋 = 𝑥, 𝑍 = 𝑧) = E(𝑌 |𝑋 = 𝑥, 𝑍 = 𝑧) = 𝜋(𝑥, 𝑦) = 𝑓 (𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧)

where

𝑓 (𝜂) =
exp(𝜂)

1 + exp(𝜂)
=

1

1 + exp(−𝜂)

for the logit model and

𝑓 (𝜂) = ∫

𝜂

−∞

exp
(
−
𝑡2

2 )
d𝑡

for the probit model. Both functions are not only non-linear but also non-polynomial, that

is for any cardinal number 𝑛
d𝑛𝑓 (𝜂)

d𝜂𝑛
≠ 0

except for a finite set of values of 𝜂.

For the logit model we have

𝑓
′
(𝜂) =

d𝑓 (𝜂)

d𝜂
= 𝑓 (𝜂)[1 − 𝑓 (𝜂)]

and

𝑓
′′
(𝜂) =

d2𝑓 (𝜂)

d𝜂2
= 𝑓 (𝜂)[1 − 𝑓 (𝜂)][1 − 2𝑓 (𝜂)]
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while for the probit model we have

𝑓
′
(𝜂) =

d𝑓 (𝜂)

d𝜂
= exp

(
−
𝜂2

2 )

and

𝑓
′′
(𝜂) =

d2𝑓 (𝜂)

d𝜂2
= −𝜂 exp

(
−
𝜂2

2 )

For both models we have 𝑓 ′(𝜂) > 0 for all values of 𝜂, while 𝑓 ′′(𝜂) = 0 if and only if 𝜂 = 0.1

The marginal effects of 𝑋 and 𝑍 are

𝜋̇𝑥(𝑥, 𝑧) ∶=
𝜕𝜋(𝑥, 𝑧)

𝜕𝑥
= 𝑓

′
(𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧)(𝛽𝑥 + 𝛽𝑥𝑧𝑧)

𝜋̇𝑧(𝑥, 𝑧) ∶=
𝜕𝜋(𝑥, 𝑧)

𝜕𝑧
= 𝑓

′
(𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧)(𝛽𝑥 + 𝛽𝑥𝑧𝑥)

(1)

while cross-derivative of the marginal effects, the marginal interaction, is

𝜋̈𝑥𝑧(𝑥, 𝑧) ∶=
𝜕2𝜋(𝑥, 𝑦)

𝜕𝑥𝜕𝑧
= 𝑓

′
(𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧)𝛽𝑥𝑧

+ 𝑓
′′
(𝛼 + 𝛽𝑥𝑥 + 𝛽𝑧𝑧 + 𝛽𝑥𝑧𝑥𝑧)(𝛽𝑥 + 𝛽𝑥𝑧𝑧)(𝛽𝑧 + 𝛽𝑥𝑧𝑥).

(2)

An immediate implication of this is that marginal effects in logit and probit models are not

constant - if they are defined in terms of (partial) derivatives. If it is considered as a criterion

for the absence of interaction effects that marginal effects are constant, then logit and probit

models will always contain interaction effects, even in the absence of interaction terms. Yet

if this is the case the assertion that a logit or probit model contains interaction effects is no

longer informative. Accordingly, various authors such as Nagler (1991) or Frant (1991) have

argued that non-constant marginal effects should not be interpreted as interaction effects

because they are direct implications of model assumptions. Instead, an interaction effect

should only be considered as a substantial aspect of a logit or probit model if the coefficient

of the corresponding product term is non-zero.

There is an intuitive way one can make sense of these non-constant marginal effects: If

the probability of a positive outcome is about 1

2
the slope of 𝜋(𝑥, 𝑧) with respect to changes

in 𝑥 or 𝑧 is maximal in both logit and probit models. If 𝜋(𝑥, 𝑧) is close to unity, an increase in

𝑥 or 𝑧 simply cannot lead to the same change in the probability of a positive outcome in the

response than if 𝜋(𝑥, 𝑧) is close to 1

2
, because it cannot become greater than unity. Similarly,

𝜋(𝑥, 𝑧) cannot change in the same amount if it is close to zero as if it is close to 1

2
if 𝑥 or

1This is trivial for probit models. For logit models we have 𝑓 (0) = 1

2
⇒ 1 − 2𝑓 (𝜂) = 0 ⇒ 𝑓 ′′(𝜂) = 0.
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𝑧 are decreased, because a probability cannot get less than zero. This consequence of the

restriction of probabilities to the range from zero to unity is what various authors (Berry et

al. 2010; Rainey 2016) refer to as “compression”.

While earlier authors like Nagler (1991) and Frant (1991) argue that the consequences of

“compression” should not be taken as theoretically meaningful, more recent authors have

come forward with contrary recommendations. Berry et al. (2010) state in a widely cited

American Journal of Political Science article that an interaction effects are not merely arte-

facts of the non-linearity of logit or probit models – instead they are often of theoretical

importance. Further, they argue “that a statistically significant product term is neither ne-

cessary nor sufficient for claiming interaction among independent variables in influencing”

(250) the probability of a positive outcome of a binary response model. Instead, they argue

that claims about interactions should not be based on the presence or significance of product

terms, but on the substantive implications of the theory that one translates into a binary

response model. It will be argued further below that this recommendation partially rests on

an awkward, if not mistaken understanding of statistical significance.2

There are two main methodological arguments that Berry et al. (2010) bring forward in

support of their claim:

1. a statistically significant (coefficient estimate of a) product term is not a necessary
condition for a substantive meaningful interaction between to variables with regards

to their influence on the probability of a positive outcome of the dependent variable

– there are instances where such an interaction is of substantial size and statistical

significant even if there is no corresponding product term present in the model (Berry

et al. 2010, 257).

2. a statistically significant (coefficient estimate of a) product term is not a sufficient
condition for a substantive meaningful interaction between to variables with regards

to their influence on the probability of a positive outcome of the dependent variable –

there are instances where there is no statistically significant interaction even though

there is a statistically significant product term present in the model (Berry et al. 2010,

258).

Berry et al. (2010) however do not mean to dispute the mathematical properties presented

above, they do claim however that the presence of a product term in a logit or probit

model is not the same as the presence of a “substantively meaningful interaction” of two

2It should be noted that the formulation in the cited statement is already a bit sloppy, as it is not a product
term that can be either statistically significant or not, but the estimate of a coefficient of such a product term.
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variables in influencing a binary dependent variable. They propose two criteria for such

a meaningful interaction: “(1) that the interaction is statistically significant” and “(2) the

estimated magnitude of the interaction is large enough to be deemed consequential”. It is

important to note here that the magnitude of the interaction (in the notation of this paper)

is not
[𝜋(𝑥2, 𝑧2) − 𝜋(𝑥1, 𝑧2)] − [𝜋(𝑥2, 𝑧1) − 𝜋(𝑥1, 𝑧1)]

(𝑥2 − 𝑥1)(𝑧2 − 𝑧1)
=

Δ2𝜋(𝑥, 𝑧)

Δ𝑥Δ𝑧
(3)

but

[𝜋(𝑥2, 𝑧2) − 𝜋(𝑥1, 𝑧2)] − [𝜋(𝑥2, 𝑧1) − 𝜋(𝑥1, 𝑧1)] = Δ
2
𝜋(𝑥, 𝑧). (4)

Formalised as suggested by Berry et al. (2010), the first criterion means that the null

hypothesis Δ2𝜋(𝑥, 𝑧) = 0 can be rejected with some pre-determined level of statistical

significance and the alternative hypothesis Δ2𝜋(𝑥, 𝑧) ≠ 0 can be accepted, while the second

criterion means that |Δ2𝜋(𝑥, 𝑧)| > 𝑐 for some pre-determined 𝑐.

Due to the mean value theorem of differential calculus this means that this “Berry

interaction” is equal to

Δ
2
𝜋(𝑥, 𝑧) = (𝑥2 − 𝑥1)(𝑧2 − 𝑧1)𝜋̈𝑥𝑧(𝑥

∗
, 𝑧

∗
)

for some 𝑥1 ≤ 𝑥∗ ≤ 𝑥2 and 𝑧1 ≤ 𝑧∗ ≤ 𝑧2. Translated back into the world of linear regression,

this “Berry interaction” would not be equal to 𝛽𝑥𝑧 but to (𝑥2 − 𝑥1)(𝑧2 − 𝑧1)𝛽𝑥𝑧.

From the preceding considerations it becomes obvious that the two claims cited above are

mathematically trivial: 𝛽𝑥𝑦 ≠ 0 is not necessary for the “Berry interaction” Δ2𝜋(𝑥, 𝑧) to be

statistically significant and of nontrivial magnitude, because for any 𝛽𝑥𝑦 ≠ 0 one just needs to

choose 𝑥1,𝑥2,𝑧1,𝑧2 such that (𝑥2 −𝑥1)(𝑧2 −𝑧1) is small enough that |Δ2𝜋(𝑥, 𝑧)| < 𝑐. Conversely,

𝛽𝑥𝑦 ≠ 0 is not sufficient for the “Berry interaction” Δ2𝜋(𝑥, 𝑧) to be statistically significant and

of nontrivial magnitude, because even with 𝛽𝑥𝑧 = 0 the marginal interaction 𝜋̈𝑥𝑧(𝑥
∗, 𝑧∗) is

different from zero for almost all of the infinitely many possible values of 𝑥∗ and 𝑧∗, so that

𝑥1,𝑥2,𝑧1,𝑧2 can be chosen such that (𝑥2−𝑥1)(𝑧2−𝑧1) is large enough to make |Δ2𝜋(𝑥, 𝑧)| > 𝑐 and

|Δ2𝜋(𝑥, 𝑧)| > 𝑐† where 𝑐† is a constant for which |Δ2𝜋(𝑥, 𝑧)| can be judged to be statistically

significant.

It could be argued that this “reduction to mathematical triviality” is too simple to do

justice to Berry et al.’ arguments and that the mathematical argument is of little practical

importance. The main counterargument could be that the choice of 𝑥1,𝑥2,𝑧1,𝑧2 is not just

arbitrary, but these values of the independent variables are chosen on substantive grounds.

Therefore, the following considerations focus on the role of the second derivatives 𝜋̈𝑥𝑧(𝑥, 𝑧)
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for the statistical significance of the Berry interaction Δ2𝜋(𝑥, 𝑧). Thereafter, an obviously

non-arbitrary choice of 𝑥1,𝑥2,𝑧1,𝑧2 is considered and what it then would mean that the Berry

interaction has or has not a nontrivial magnitude.

For the sake of the argument let us assume that 𝑥1,𝑥2,𝑧1,𝑧2 are chosen in a non-arbitrary,

substantively meaningful fashion and let us for brevity define 𝑎 = (𝑥2 − 𝑥1)(𝑧2 − 𝑧1) ≠ 0. The

null hypothesis Δ2𝜋(𝑥, 𝑧) = 0 then means that

𝑎𝜋̈𝑥𝑧(𝑥
∗
, 𝑧

∗
) = 0 (5)

for appropriate values of 𝑥∗ and 𝑧∗ with 𝑥1 ≤ 𝑥∗ ≤ 𝑥2 and 𝑧1 ≤ 𝑧∗ ≤ 𝑧2.

If 𝛽𝑥 = 𝛽𝑧 = 𝛽𝑥𝑧 = 0 then this equation is trivially satisfied. If 𝛽𝑥𝑧 = 0, equation (5) requires

that 𝛽𝑥 = 0 or 𝛽𝑧 = 0 or the linear equation

𝛼 + 𝛽𝑥𝑥
∗
+ 𝛽𝑧𝑧

∗
= 0 (6)

is satisfied, because 𝑓 ′′(0) = 0. For any given 𝑥∗ and 𝑧∗ there are infinitely many values of 𝛼,

𝛽𝑥 , and 𝛽𝑧 that solve the equation. Yet the solution set depends on 𝑥∗ and 𝑧∗: If 𝛽𝑧 ≠ 0 and

we substitute 𝑧† = 𝑧∗ + 𝜖 (𝜖 ≠ 0) for 𝑧∗ in equation (6) we get

𝛼 + 𝛽𝑥𝑥
∗
+ 𝛽𝑧𝑧

†
= 𝛽𝑧𝜖 ≠ 0

that is, the linear equation is no longer satisfied, unless we make substitutions that change

𝛼, 𝛽𝑥 or 𝛽𝑧, for example 𝛼† = 𝛼 − 𝛽𝑧𝜖.

The interdependence between values of 𝛼, 𝛽𝑥 , 𝛽𝑧, 𝑥 and 𝑧 that solve the equation 𝜋̈(𝑥, 𝑧) = 0

is illustrated in figure 1. The left-hand sub-figure shows that for given values 𝑥 = 1 and 𝑧 = 1

all non-trivial solutions indeed lie on a straight line. One such solutions is (𝛽𝑥 ; 𝛽𝑧) = ( 1
2
; − 1

2
),

which is marked by a dot in the left-hand sub-figure. The right-hand sub-figure illustrates

that (𝛽𝑥 ; 𝛽𝑧) = ( 1
2
; − 1

2
) solves the equation not in general, but only for a specific subset of

pairs of values of 𝑥 and 𝑧, namely those for which 𝑥 = 𝑧.

If 𝛽𝑥𝑧 ≠ 0, equation (5) requires that

𝑓
′
(𝛼+𝛽𝑥𝑥

∗
+𝛽𝑧𝑧

∗
+𝛽𝑥𝑧𝑥

∗
𝑧
∗
)𝛽𝑥𝑧+𝑓

′′
(𝛼+𝛽𝑥𝑥

∗
+𝛽𝑧𝑧

∗
+𝛽𝑥𝑧𝑥

∗
𝑧
∗
)(𝛽𝑥+𝛽𝑥𝑧𝑧

∗
)(𝛽𝑧+𝛽𝑥𝑧𝑥

∗
) = 0. (7)

The idea that this equation may have non-trivial solutions leads Berry et al. (2010) to argue

that 𝛽𝑥𝑧 ≠ 0 is not sufficient for Δ2𝜋(𝑥, 𝑧) to be non-zero. Rainey (2016) goes even further

to argues that a product term should always be included in a logit or probit model, because
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values for 𝛽𝑥 and 𝛽𝑧 used in the right-hand sub-
figure.
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2
and 𝛽𝑧 = − 1

2
, while 𝑥 and 𝑧 vary.

Red lines mark those values for 𝑥 and 𝑧, where
𝜋̈(𝑥, 𝑧) = 0. The black dot corresponds to the
values for 𝑥 and 𝑧 used in the left-hand sub-
figure.

Figure 1: Illustration of the conditions for 𝜋̈(𝑥, 𝑧) = 0, when there is no product term (with
non-zero coefficient) in the model

only then it is possible to test whether there is an interaction of 𝑋 and 𝑍 in their influence

on 𝑌 .

Indeed for given values 𝑥∗ and 𝑧∗ there may be infinitely many different values for 𝛼, 𝛽𝑥 , 𝛽𝑧,

and 𝛽𝑥𝑧 for which equation 𝜋̈𝑥𝑧(𝑥
∗, 𝑧∗) = 0 is satisfied. Yet the solution set will depend on the

particular values 𝑥∗ of 𝑧∗. For example, a set of coefficient values that satisfies 𝜋̈𝑥𝑧(𝑥
∗, 𝑧∗) = 0

for 𝑥∗ = 1 and 𝑧∗ = 1 may not satisfy this equation for 𝑥∗ = 0 and 𝑧∗ = 0. This is illustrated

in Figure 2. Both diagrams show how 𝜋̈𝑥𝑧(𝑥, 𝑧) varies with 𝛽𝑥𝑧 for given settings of 𝛼 = 0,

𝛽𝑥 = 1, 𝛽𝑧 = 1, 𝑥 , and 𝑧. In the left-hand sub-figure the settings of the independent variables

are 𝑥 = 1 and 𝑧 = 1, and the value of 𝛽𝑥𝑧 for which 𝜋̈𝑥𝑧(𝑥
∗, 𝑧∗) = 0 is satisfied is −3.378031…

(the value is identified by solving the equation numerically3). In the right-hand sub-figure

the settings of the independent variables are 𝑥 = 0 and 𝑧 = 0, and the value of 𝛽𝑥𝑧 for which

𝜋̈𝑥𝑧(𝑥
∗, 𝑧∗) = 0 is a different one, namely zero. That is, the set of coefficient values for which

the equation is satisfied are different for 𝑥 = 0 and 𝑧 = 0 from the ones for 𝑥 = 1 and 𝑧 = 1.

For both zero and non-zero coefficient of product terms, 𝜋̈𝑥𝑧(𝑥, 𝑧) is non-zero almost

everywhere for 𝑥 and 𝑧, but there are also values for which 𝜋̈𝑥𝑧(𝑥, 𝑧) is zero. Since 𝜋̈𝑥𝑧(𝑥, 𝑧) is

continuous for logit and probit models, it can be globally non-zero only if it either globally

3For this purpose the function uniroot() of the software package R was used (R Core Team 2020).
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(a) Values of 𝜋̈(𝑥, 𝑧), depending on 𝛽𝑥𝑧 , with inde-
pendent variables fixed at 𝑥 = 1 and 𝑧 = 1 and
their coefficients set to 𝛽𝑥 = 1 and 𝛽𝑧 = 1. The
vertical dotted line indicates the value of 𝛽𝑥𝑧
for which 𝜋̈(𝑥, 𝑧) = 0.
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(b) Values of 𝜋̈(𝑥, 𝑧), depending on 𝛽𝑥𝑧 , with in-
dependent variables fixed at 𝑥 = 0 and 𝑧 = 0

and their coefficients set to 𝛽𝑥 = 1 and 𝛽𝑧 = 1.
The vertical dotted line indicates the value of
𝛽𝑥𝑧 for which 𝜋̈(𝑥, 𝑧) = 0, which in this case is
𝛽𝑥𝑧 = 0.

Figure 2: The cross-derivative 𝜋̈𝑥𝑧(𝑥, 𝑧) as a function of the coefficient of a product term for
different settings of 𝑥 and 𝑧.

smaller or larger than zero. This, however, would require that 𝜋𝑥𝑧(𝑥, 𝑧) is either globally

concave or convex. Yet this is impossible, because 𝜋𝑥𝑧(𝑥, 𝑧) is strictly bounded between

zero and unity. This is illustrated by Figure 3 and . Figure 3 shows how the probability

of a positive outcome of a dependent variable in a logit model varies with the values of

the independent variables and also shows for which values of the independent variables the

cross-derivatives are zero. In all three diagrams there are sets of values of 𝑥 and 𝑧 for which

the cross-derivatives are zero, even though the diagrams are different in terms of the sign of

the coefficient of the product term.

Figure 4 traces the “diagonals” of the diagrams in Figure 3 defined by 𝑥 = 𝑧. Thus Figure

4 shows curves instead of surfaces. The dotted vertical lines indicate the values for 𝑥 and 𝑧

for which 𝜋̈𝑥𝑧(𝑥, 𝑧) is zero (the values are identified by solving the equation numerically4).

Here the roots of 𝜋̈𝑥𝑧(𝑥, 𝑧) for 𝑥 = 𝑧 mark the inflection points of the curves. Without the

inflection points the curve of 𝜋(𝑥, 𝑧) in sub-figure 4a would continue downwards with 𝑥 = 𝑧

going to −∞ or +∞, eventually becoming less than zero. In sub-figure 4c the curve would

continue upwards with 𝑥 = 𝑧 going to −∞ or +∞, eventually becoming greater than unity.

4For this purpose the function uniroot() of the software package R was used (R Core Team 2020)
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(a) Diagram for 𝛼 = 0, 𝛽𝑥 = 1,
𝛽𝑧 = 1, and 𝛽𝑥𝑧 = −1; −1 ≤

𝑥 ≤ +3 and −1 ≤ 𝑧 ≤ +3.

x

z

pi(x, z)

(b) Diagram for 𝛼 = 0, 𝛽𝑥 = 1,
𝛽𝑧 = 1, and 𝛽𝑥𝑧 = 0; −1.5 ≤

𝑥 ≤ +2.5 and−1.5 ≤ 𝑧 ≤ +2.5.

x

z

pi(x, z)

(c) Diagram for 𝛼 = 0, 𝛽𝑥 = 1,
𝛽𝑧 = 1, and 𝛽𝑥𝑧 = +1; −3 ≤

𝑥 ≤ +1 and −3 ≤ 𝑧 ≤ +1.

Figure 3: Surface diagrams of 𝜋(𝑥, 𝑧) with countour lines indicating where 𝜋̈𝑥𝑧(𝑥, 𝑧) is zero
for logit models with negative, zero, and positive product term coefficients.

In sub-figure 4b the curve would continue downward with 𝑥 = 𝑧 going to −∞ and continue

upward with 𝑥 = 𝑧 going to +∞, eventually becoming less than zero or greater than unity,

respectively.

What these considerations show is, firstly, that for almost all values of the independent

variables of a logit or probit model, the marginal interaction is different from zero, whether

or not the coefficient of a product term is zero. Secondly, for some values of the independent

variables of a logit or probit model, the marginal interaction equals zero, yet these values

depend on the coefficient values. Except for trivial cases where one or all coefficients of

the independent variables are zero, the values of the independent variables that lead to zero

marginal interactions depend on the coefficient values and there are no instances where

marginal interactions are zero for all values of the independent variables. Thirdly, it is

not only a consequence of “compression” that marginal interactions are nonzero almost

everywhere, “compression” also necessitates that marginal interactions are zero for a subset

of the values of the independent variables.

Statistical hypotheses about regression models, generalised linear models, and other

models of the influence of independent variables, say 𝑋 and 𝑍 , on a dependent variable, say

𝑌 , are about the form that this influence takes, without any restrictions on the values of the

independent variables. Therefore, if a null hypothesis cannot be true unless for very specific

values of the independent variables, it should be assumed to be false. If a consistent test is

used for a null hypothesis that is false, the probability that the test leads to its rejection per
definitionem approaches 100% as the sample size approaches infinity. That is, if we reject a

null hypothesis known to be false in a particular instance, then all we learn is that the sample

11
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(a) Diagram for 𝛼 = 0, 𝛽𝑥 = 1,
𝛽𝑧 = 1, and 𝛽𝑥𝑧 = −1; −1 ≤
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(b) Diagram for 𝛼 = 0, 𝛽𝑥 = 1,
𝛽𝑧 = 1, and 𝛽𝑥𝑧 = 0; −1.5 ≤

𝑥 = 𝑧 ≤ +2.5.
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(c) Diagram for 𝛼 = 0, 𝛽𝑥 = 1,
𝛽𝑧 = 1, and 𝛽𝑥𝑧 = +1; −3 ≤

𝑥 = 𝑧 ≤ +1.

Figure 4: Curves of 𝜋(𝑥, 𝑧) with lines indicating where 𝜋̈𝑥𝑧(𝑥, 𝑧) is zero for 𝑥 = 𝑧 for logit
models with negative, zero, and positive product term coefficients.

size is large enough for this. Conversely, if we do not reject a null hypothesis known to be

false, then what we should conclude is that our sample does not provide enough statistical

power to do so.

Apart from an insufficient sample size, there are two other possibilities that may lead

researchers to the conclusion that their analysis does not support a non-zero interaction. The

first possibility is that the range of the values of the relevant independent variables is so small

that the first and second differences are scaled down so much that they appear insubstantial

in size or statistically significant. This first possibility is only relevant for the computation

of a “raw” second difference or what has so far been referred to as a “Berry interaction”. The

second possibility is that the values of the independent variables are concentrated around the

inflection points of 𝜋(𝑥, 𝑧), i.e. those values of 𝑥 and 𝑧 where the second derivatives 𝜋̈𝑥𝑧(𝑥, 𝑧)

happen to be equal to zero.

The lesson to learn from this discussion is that if researchers find or do not find interaction

effects (understood as second differences, second difference ratios, or marginal interactions)

predicted by a logit or probit model fitted to their data, it does not provide information about

the data-generating process, but about the (quality of the) sample. That not withstanding,

both Berry et al. (2010) and Rainey (2016) suggest, or rather pre-suppose that it may be

of theoretical relevance whether such interaction effects are present and that they are not

artefacts created by the use of logit, probit or other non-linear models. Rainey (2016) even

recommends that one should always include product terms to allow for the absence of

interactions and make the presence of an interaction a testable hypothesis. If their arguments
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is to have any genuine relevance, the absence of such an interaction should theoretically and

empirically make sense.

Given that interactions (understood as second differences, second difference ratios, or

marginal interactions) are an intrinsic property of logit, probit, or similar models, testing

hypotheses about their presence is futile unless one is willing to consider other kind of

models for binary dependent variables. If scholars have strong theoretical reasons to expect

that independent variables do not have any compression-induced interactions for a wider

than a single point in the independent variables – which does not seem possible unless the

function that links the independent variable to the probability 𝜋(𝑥, 𝑦) of a positive response

– they should look for alternatives to linear logit or probit models. One such alternative is an

additive logit or additive probit model (Hastie and Tibshirani 1990; Ruppert et al. 2003). With

two independent variables an additive logit model for a binary dependent variable takes the

form

ln
Pr(𝑌 = 1|𝑋 = 𝑥, 𝑍 = 𝑧)

Pr(𝑌 = 0|𝑋 = 𝑥, 𝑍 = 𝑧)
= 𝑠𝑥(𝑥) + 𝑠𝑧(𝑧)

where 𝑠𝑥(𝑥) and 𝑠𝑧(𝑧) are unrestricted continuous univariate functions estimated e.g. with

the help of smoothing splines. Such a model can also contain a joint term of more both

independent variables:

ln
Pr(𝑌 = 1|𝑋 = 𝑥, 𝑍 = 𝑧)

Pr(𝑌 = 0|𝑋 = 𝑥, 𝑍 = 𝑧)
= 𝑠𝑥𝑧(𝑥, 𝑧)

where 𝑠𝑥𝑧(𝑥, 𝑧) is an continuous bivariate functions estimated e.g. with the help of a tensor-

product or thin-plate spline (Hastie and Tibshirani 1990; Ruppert et al. 2003). Another

alternative would be to use a model with a non-parametric link between a linear part of the

model and the probability of a positive response (e.g. Manski 1975). Linear logistic models

can be considered to be nested in such semi-parametric alternatives. Thus, while it is futile

to test for marginal interactions or Berry-interactions within the framework of linear logit or

linear probit models, it is possible with such non-parametric alternatives. Yet in this case, a

hypothesis of suppression-induced interaction effects no longer has the role of an alternative

hypothesis (as envisaged by Berry et al. 2016) but that of a null hypothesis. Finally, one

could consider linear-probability models (and in fact such a linear probability model is the

basis of the data generating process in Rainey’s simulation study Rainey 2016). Yet in this

case one has to deal with the fact that neither a linear logit or probit model is a special

case of a linear probability-model or vice versa. Furthermore, unless there are sensible a-

priori (and not sample-dependent) restrictions on the range of the independent variables,

a linear probability-model will also exhibit “compression”, which however unfortunately is

non-smooth.
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As already remarked on at the beginning of this section, “compression” is made inevitable

by the fact that response probabilities are per definitionem restricted between zero and

100 percent. If a scholar’s theory implies the absence of Berry-interactions or marginal

interactions, then should consider alternatives to logit and probit like those just discussed.

Yet if their theory implies that a probability of a positive outcome of a binary dependent

variable may lie outside the range from zero to 100 percent, then something is wrong with the

theory and they should look for another one. Yet rarely are social science theories elaborated

to such a degree and scales of measurement so well developed that they imply any functional

form for regression models or generalised regression models, not to mention the presence or

absence of marginal interactions. In so far, the discussion of the presence or absence of such

interaction in logit or probit models appears indeed to be much ado about nothing.

2 Baseline categories, predicted probabilities, and
inference in multinomial logit models

A common problem in the interpretation of multinomial baseline logit models is the large

number of coefficients they involve. This makes it difficult to interpret estimates and can even

create problems for their presentation if the number of independent variables is large – not

to mention if models also include product terms. This problem is exacerbated by the fact that

the size, direction, and meaning of the coefficients in a multinomial baseline model depends

on the choice of the baseline category. For example, the equations for a multinomial logit

model for a qualitative dependent variable 𝑌 with categories 𝐴, 𝐵, and 𝐶 and independent

variable 𝑋 has, if 𝐴 is chosen as baseline category, the form

ln
Pr(𝑌 = 𝐵|𝑋 = 𝑥)

Pr(𝑌 = 𝐴|𝑋 = 𝑥)
= 𝛼𝐵 + 𝛽𝐵𝑥

ln
Pr(𝑌 = 𝐶|𝑋 = 𝑥)

Pr(𝑌 = 𝐴|𝑋 = 𝑥)
= 𝛼𝐶 + 𝛽𝐶𝑥

while if 𝐶 is chosen as baseline category it has the form:

ln
Pr(𝑌 = 𝐴|𝑋 = 𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥)
= 𝛼

†

𝐴 + 𝛽
†

𝐴𝑥

ln
Pr(𝑌 = 𝐵|𝑋 = 𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥)
= 𝛼

†

𝐵 + 𝛽
†

𝐵𝑥
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where 𝛼
†

𝐴 = −𝛼𝐶 , 𝛽†

𝐴 = −𝛽𝐶 , 𝛼†

𝐵 = 𝛼𝐵 − 𝛼𝐶 , and 𝛽
†

𝐵 = 𝛽𝐵 − 𝛽𝐶 . This is so because

ln
Pr(𝑌 = 𝐴|𝑋 = 𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥)
= − ln

Pr(𝑌 = 𝐶|𝑋 = 𝑥)

Pr(𝑌 = 𝐴|𝑋 = 𝑥)

and

ln
Pr(𝑌 = 𝐵|𝑋 = 𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥)
= ln

Pr(𝑌 = 𝐵|𝑋 = 𝑥)

Pr(𝑌 = 𝐴|𝑋 = 𝑥)
+ ln

Pr(𝑌 = 𝐴|𝑋 = 𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥)

= ln
Pr(𝑌 = 𝐵|𝑋 = 𝑥)

Pr(𝑌 = 𝐴|𝑋 = 𝑥)
− ln

Pr(𝑌 = 𝐶|𝑋 = 𝑥)

Pr(𝑌 = 𝐴|𝑋 = 𝑥)

As a consequence it is possible that coefficients are non-zero in one formulation of the

model but zero in another. This quite obviously is the case, for example, if 𝛽𝐵 = 𝛽𝐶 .

However, the way the probabilities are related to independent variables is independent

from the choice of the baseline category. For example,

Pr(𝑌 = 𝐶|𝑋 = 𝑥) =
exp(𝛼𝐶 + 𝛽𝐶𝑥)

1 + exp(𝛼𝐵 + 𝛽𝐵𝑥) + exp(𝛼𝐶 + 𝛽𝐶𝑥)

=
1

1 + exp(−𝛼𝐶 − 𝛽𝐶𝑥) + exp((𝛼𝐵 − 𝛼𝐶) + (𝛽𝐵 − 𝛽𝑐)𝑥)

=
1

1 + exp(𝛼
†

𝐴 + 𝛽
†

𝐴𝑥) + exp(𝛼
†

𝐵 + 𝛽
†

𝐵𝑥)
.

Yet it is also straightforward to see that it is not possible within the framework of a

multinomial logit model, that the conditional probability of any of the outcome categories

is constant while the other probabilities are affected by the independent variables. In the

previous example, the probability that 𝑌 = 𝐶 is independent from 𝑋 is possible only if

𝛽
†

𝐴 = 0 and 𝛽
†

𝐵 = 0, which in turn implies that the probabilities that 𝑌 = 𝐴 or 𝑌 = 𝐵

are also independent from 𝑋 . In order to allow e.g. Pr(𝑌 = 𝐶|𝑋 = 𝑥) to be constant [i.e.

Pr(𝑌 = 𝐶|𝑋 = 𝑥) = Pr(𝑌 = 𝐶)], while Pr(𝑌 = 𝐴|𝑋 = 𝑥) and Pr(𝑌 = 𝐵|𝑋 = 𝑥) vary with 𝑥

one needs to give up the (linear) multinomial logit model. One alternative would be a model

where the influence on the independent variables on log-odds of the outcome probabilities is

non-linear, a generalisation discussed at the end of the previous section. Another alternative

would be a sequential logit model as proposed by . In the previous example, a sequential

logit model that would have Pr(𝑌 = 𝐴|𝑋 = 𝑥) to be constant is

ln
Pr(𝑌 = 𝐴|𝑋 = 𝑥)

Pr(𝑌 = 𝐵|𝑋 = 𝑥) + Pr(𝑌 = 𝐶|𝑋 = 𝑥)
= 𝛼𝐴

ln
Pr(𝑌 = 𝐵|𝑋 = 𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥)
= 𝛼𝐵 + 𝛽𝐵𝑥
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or

Pr(𝑌 = 𝐴|𝑋 = 𝑥) =
exp(𝛼𝐴)

1 + exp(𝛼𝐴)

Pr(𝑌 = 𝐵|𝑋 = 𝑥) =
1

1 + exp(𝛼𝐴)

exp(𝛼𝐵 + 𝛽𝐵𝑥)

1 + exp(𝛼𝐵 + 𝛽𝐵𝑥)

Pr(𝑌 = 𝐶|𝑋 = 𝑥) =
1

1 + exp(𝛼𝐴)

1

1 + exp(𝛼𝐵 + 𝛽𝐵𝑥)
.

While this example looks very complicated, but with the help of introducing two auxiliary

variables, it can be treated by estimating two separate binary logit models.

In a recent article published by Political Analysis, Paolino (2020) argues that instead

of focusing on the statistical significance coefficients, researchers should focus on the

statistical significance of changes in the predicted probabilities depending on the values of

an independent variable, because such changes can be statistical significant, even though

certain coefficients are not statistically significant. The previous considerations indicate

however that this recommendation can be misleading, because if one assumes a multinomial

logit model, either all or none of outcome probabilities are unaffected by the values of the

independent variables. In fact, inferences drawn from the (apparent) statistical significance

or insignificance of probability differences for different values of an independent variable are

fallacious for similar reasons as inferences drawn from Berry interactions discussed in the

previous section.

Due to the mean value theorem of differential calculus we have (using the notation

𝜋𝐴(𝑥) = Pr(𝑌 = 𝐴|𝑋 = 𝑥))

Pr(𝑌 = 𝐴|𝑋 = 𝑥2) − Pr(𝑌 = 𝐴|𝑋 = 𝑥1) = (𝑥2 − 𝑥1)
𝜋𝐴(𝑥2) − 𝜋𝐴(𝑥1)

𝑥2 − 𝑥1

= (𝑥2 − 𝑥1)
𝜕𝜋𝐴(𝑥)

𝜕𝑥

|
|
|
|𝑥=𝑥∗

for 𝑥1 ≤ 𝑥∗ ≤ 𝑥2. Thus the difference in probabilities increases with the absolute value of

𝑥2 − 𝑥1.

Of course, the values of the independent variables may be non-arbitrary, e.g. correspond

to the treatment and control condition in an experiment as discussed in Gelpi (2017), so that

the inflation or deflation of a probability difference by the factor 𝑥2 − 𝑥1 may also be non-

arbitrary. Therefore a closer inspection of the partial derivative may be in order.
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In the three outcome categories example discussed previously we have (using the notation

𝜋𝐵(𝑥) = Pr(𝑌 = 𝐵|𝑋 = 𝑥) and 𝜋𝐶(𝑥) = Pr(𝑌 = 𝐶|𝑋 = 𝑥))

𝜕𝜋𝐶(𝑥)

𝜕𝑥
=

𝜕

𝜕𝑥

exp(𝛼𝐶 + 𝛽𝐶𝑥)

1 + exp(𝛼𝐵 + 𝛽𝐵𝑥) + exp(𝛼𝐶 + 𝛽𝐶𝑥)

=
exp(𝛼𝐶 + 𝛽𝐶𝑥)

1 + exp(𝛼𝐵 + 𝛽𝐵𝑥) + exp(𝛼𝐶 + 𝛽𝐶𝑥)
𝛽𝐶

−
exp(𝛼𝐶 + 𝛽𝐶𝑥)

[1 + exp(𝛼𝐵 + 𝛽𝐵𝑥) + exp(𝛼𝐶 + 𝛽𝐶𝑥)]
2
[exp(𝛼𝐵 + 𝛽𝐵𝑥)𝛽𝐵 + exp(𝛼𝐶 + 𝛽𝐶𝑥)𝛽𝐶]

= 𝜋𝐶(𝑥)[1 − 𝜋𝐶(𝑥)]𝛽𝐶 − 𝜋𝐵(𝑥)𝜋𝐶(𝑥)𝛽𝐵.

From this we can conclude that the marginal effect of 𝑋 on the probability that 𝑌 = 𝐶 is non-

zero in a multinomial logit model except for particular values of 𝑋 , unless both coefficients

𝛽𝐵 and 𝛽𝐶 are zero. Thus, within the framework of a multinomial logit model, a marginal

effect on the probability of a particular outcome will almost always be non-zero, unless the

independent variable in question does not have influence on any of the outcome categories.

That an independent variable affects either all or none of the categories of the dependent

variable in a multinomial logit model may seem to be a strong restriction. However, one

could argue that it would be quite unusual if one specific category differs from the other

categories in being affected by an independent variable, if these categories are not viewed as

a pre-existing group. To draw an analogy to modelling the influence of independent variables

on a numeric dependent variable, restriction would be comparable to a situation where the

likelihood of values within a certain range of the dependent variable remains unaffected.

The previous considerations show that it is not a good idea to focus on predicted prob-

ability changes of individual categories of a dependent variable if a multinomial logit model

is used and assumed to be correctly specified – in direct contrast to Paolino’s 2020 recom-

mendations. He does make a valid point however, if he suggest that for inference one should

not focus on the statistical significance of individual coefficients. We already saw that results

with respect to the size and statistical significance may depend crucially on the choice of the

response category. In particular if the number of independent variables in a multinomial logit

models is large, the number of coefficients not only makes a discussion of individual coeffi-

cients impractical, it also creates problems for unbiased hypothesis testing. On the one hand,

nominal 𝑝-values may become anti-conservative if hypotheses about several coefficients are

tested simultaneously. On the other hand, straightforward Bonferroni corrections will be

incorrect, because the estimates of the logit coefficients and 𝑝-values are not stochastically

independent from one another. This is problem is not unlike the problem of dummy coeffi-
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cients in the context of linear regression. In that context, the best strategy to test hypotheses

about the influence of independent variables is to use model comparison 𝐹 -tests. In case of

multinomial logit models the appropriate technique will be to compare models using likeli-

hood ratio tests.

3 Conclusion

The present paper discusses recent articles that recommendations that advise against basing

the assessment of the influence of independent variables in models for categorical dependent

variables. Berry et al. (2010) argue that coefficients of product terms should not be taken as

criteria for the existence or absence of interaction effects. Instead, interaction effects should

be assessed based on the statistical significance of second-order differences of predicted

probabilities, because even though these second-order differences are almost always non-

zero due to the “compression” of probabilities into the range from zero to unity, their

existence or non-existence can be of theoretical relevance. Paolino (2020) argues that

individual coefficients of multinomial logit models should not be used as the basis of inference

about the influence of independent variables, because their values depend on the choice of

the baseline category of the dependent variable. Instead, inferences should be based on the

statistical significance of differences of predicted probabilities.

Both recommendations are misleading. First or second differences of predicted probab-

ilities are neither general aspects of binary logit or probit models nor of multinomial logit

models. A more principled reason is that predicted probabilities, their differences or deriv-

atives are derived quantities of a model but not their parameters. A more practical reason is

that they are not general aspects of statistical model but depend on particular values of the

independent variables.

With regards to interaction effects, the preferable recommendation, in order to avoid con-

ceptual inconsistencies and ambiguities in particular applications, is to take the coefficients

of product terms as criterion. With regards to coefficients of multinomial logit models, the

preferable recommendation is neither to focus on individual coefficients nor on differences

of predicted probabilities, but on appropriate multi-parameter hypothesis tests, such as like-

lihood ratio tests.
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