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A Details for the theoretical section of the paper

A.1 Notation of linear multilevel models
In this section we explain the mathematical notation used in the main text and the following
sections of the appendix. We describe how the vectors α and b, as well as the matrices X ,
Z , Φ and V , are constructed in general and in a particular example.

A linear two-level model with k independent variables, n observations in total that are
nested in m upper-level units can generally written in the following form:

yi j = α0 + α1x1i j + · · · + αk xki j + b0 j + b1 j xh1 j k + · · · + bq j xhq j k + εi j (1)

where yi j denotes the value of the dependent variable of the i-th individual-level observation
nested in the j-th cluster or upper-level units and x1i j, . . . , xki j are the corresponding values
of the independent variables (and xh1i j, . . . , xhqi j is a subset of these). The constant α0 and
the coefficients α1, . . . , αk of the independent variables are referred to as fixed effects or fixed
effects coefficients, since they are considered as (fixed, non-random) model parameters that
are usually to be estimated from the data (i.e. the observed values of the dependent and the
independent variables). b0 j is the random intercept for the j-th cluster or upper-level unit,
b1 j, . . . , bq j are the random slopes of a subset of the independent variables.

Hierarchical linear models are just an interpretation of certain multilevel models and can
be brought in the form of equation (1). As an example, consider the hierarchical model

yi j = a0 j + a1 jui j + εi j (2)
a0 j = γ00 + γ01w j + b0 j (3)
a1 j = γ10 + γ11w j + b1 j (4)

where ui j is the value of an individual-level independent variable and εi j is an individual-level
error, while a0 j and a1 j are a group-level intercept and slope. By substituting the right-hand
sides of equations (3) and (4) for a0 j and a1 j in equation (2) and rewriting x1i j = w j , x2i j = ui j ,
x3i j = ui jw j , α0 = γ00, α1 = γ01, α2 = γ10, and α3 = γ11, this model can be rewritten as a
special case of equation (1).

By arranging the fixed effect coefficients in equation (1) into the vector α, the values of
the independent variables x1i j, . . . , xki j into the vector xi j, the random intercepts and random
slopes b01, . . . , bqm into the random vector b and by composing a vector zi j of zeros, ones
and the values xh1i j, . . . , xhqi j at the appropriate places, equation (1) can be written in vector
form:

yi j = x′i jα + z′i j b + εi j (5)

In general, any linear multilevel model can be written in this form. In matrix form, such a
model can be written in matrix form

y = Xα + Zb + ε (6)

where the response vector y has elements yi j , the predictor matrix X has rows x′i j , the matrix
Z has rows z′i j , and ε has elements εi j .
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A.2 Aspects ofMultilevelModels: DistributionalAssumptions andLog-
likelihood Function

In the construction ofmultilevel models of the form (6) it is generally assumed that the random
effects vector b and the residual error vector ε are uncorrelated with one another and with
X and have a normal distribution with zero expectation and covariance matricesΦ and σ2I ,
respectively. Usually Φ has a block-diagonal structure. For example, in a two-level model
with one set of random intercepts and one set of random slopes (for a single independent
variable),Φ would be composed of m identical 2× 2-matrices along the diagonal and zeroes
everywhere else. The expectation and variance of y (conditional on or with fixed X) are then:

E(y |X) = Xα (7)

and

Var(y |X) = E([y − Xα][y − Xα]′) = E(Zb + ε ][Zb + ε ]′) = ZΦZ′ + σ2I . (8)

In the followingwe consider the lower-level varianceσ2 and the random effects covariance
matrix Φ as depending on a vector θ of variance parameters. In case of a two-level model
with one set of random intercepts and one set of random slopes (for a single independent
variable) θ has four elements, one element for the variance of the random intercepts, one
element of the variance of the random slopes, one element for the covariance of the random
intercepts and random slopes, and one element for σ2 the variance of the residual errors—
even though Φ would be a 2m × 2m-matrix (where m as before refers to the number of
upper-level units). To emphasise that the covariance matrix of y − Xα = Zb + ε depends,
via Φ and σ2, on θ, we use the notation V (θ) for this matrix.

If the random effects b were observed, one could estimate the model parameters in α,
σ2, and Φ by maximising the “complete-data” log-likelihood:

`(α, θ; y, b) = −n
2

ln(2π) − 1
2

ln(σ2) − 1
2

ln det(Φ)

− 1
2σ2 (y − Xα − Zb)′(y − Xα − Zb) − 1

2
b′Φ−1b

(9)
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However, this complete-data log-likelihood cannot be used to estimate model parameters,
because it depends on the unobserved random effects b. This dependence can be eliminated
by integrating out the random effects, to arrive at a marginal log-likelihood:

`(α, θ; y) = −n
2

ln(2π) − 1
2

ln(σ2) − 1
2σ2 (y − Xα)′(y − Xα)

− 1
2

ln det(Φ) + ln
∫

exp
[

1
σ2 (y − Xα)′Zb − 1

2
b′

(
1
σ2 Z

′Z +Φ−1
)
b

]
d b

= −n
2

ln(2π) − 1
2

ln(σ2) − 1
2σ2 (y − Xα)′(y − Xα)

− 1
2

ln det(Φ) − p
2

ln(2π) − 1
2

ln det
(

1
σ2 Z

′Z +Φ−1
)

− 1
2σ2 (y − Xα)′Z

(
1
σ2 Z

′Z +Φ−1
)−1 1
σ2 Z

′(y − Xα)

= −n + p
2

ln(2π) − 1
2

ln det
(
σ2I + ZΦZ′

)
− 1

2
(y − Xα)′

(
σ2I + ZΣZ′

)−1
(y − Xα)

= −n + p
2

ln(2π) − 1
2

log det(V (θ)) − 1
2
(y − Xα)′V (θ)−1(y − Xα)

(10)
where V (θ) = ZΦZ′+σ2I , n is the number of observations, and p is the number of columns
in Z . The relevant integration formula can be found as Theorem 15.12.1 in Harville (1997,
322). This derivation also relies on the Sherman-Morrison-Woodbury formula which implies(

σ2I + ZΦZ′
)−1
=

1
σ2 I −

1
σ2 Z

(
1
σ2 Z

′Z +Φ−1
)−1 1

σ2 Z
′.

Taking the first and second derivatives of the log-likelihood function (10) for the coefficient
vector α leads to

∂`(α, θ; y)
∂α

= X′V (θ)−1(y − Xα) (11)

and
− ∂

2`(α, θ; y)
∂α∂α′

= X′V (θ)−1X . (12)

A.3 Conditions for the Unbiasedness of Coefficient Estimators for
Multilevel Models

Stegmueller (2013) suggests that frequentist estimators for coefficients in multilevel models
are or may be biased if the number of clusters is small, while Bayesian MCMC techniques
have no or at least a smaller bias. However, already a relatively simple frequentist
estimator coefficients in a linear multilevel model, such as ordinary least squares (OLS),
is unbiased, while on the other hand Bayes estimators are never unbiased unless under
unusual circumstances (see Casella and Berger 2002, 368 or Lehmann and Casella 2011,
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234). In the following we briefly discuss the properties of OLS and GLS as estimators of
coefficients in linear multilevel models and present a proof for the unbiasedness of maximum
likelihood estimators of these model parameters.

Ordinary least squared is the BLUE estimator for the coefficients of linear regression
model with uncorrelated disturbances. While conditions of the Gauss-Markov theorem
generally do not apply to multilevel models (Greene 2012, 100), an OLS estimator can still
be computed. The OLS estimator for the fixed-effects vector of the multilevel model given
by equation (6) is

α̂OLS = (X′X)−1X′y. (13)

The expected value (given X) of the OLS estimator is

E (α̂OLS |X) = (X′X)−1X′ E(y |X) = (X′X)−1X′Xα = α

and the variance is

Var (α̂OLS |X) = (X′X)−1X′Var(y)X(X′X)−1 = (X′X)−1X′VX(X′X)−1

with V = ZΦZ′ + σ2I .
In contrast, the variance computed under the conditions of the Gauss-Markov theorem

(that are usually reported by statistical software packages along with OLS estimates) is

V̂arOLS (α̂OLS |X) = σ̂(X′X)−1

which is obviously incorrect ifΦ does not vanish, i.e. the random effects a non-zero variances.
That is, while the OLS estimator retains its unbiasedness even if the (correct) model contains
random effects, standard errors computed under the assumption of the GaussMarkov theorem
will be too small. Statistical software packages such as Stata provide so-called “robust” or
“cluster robust” standard errors motivated by the work of Huber (1967) and White (1982).
These robust standard errors are based on the attempt to reconstruct the matrix X′VX without
the need to estimate Φ and σ2.

If the covariancematrix of b and the variance of the elements of ε (Φ andσ2, respectively)
are known (which is generally not the case in practice), the variance of y − Xα = Zb + ε is
also known as V = ZΦZ′ + σ2I , where I is the identity matrix. In this case (provided that
V is non-singular) one can use the generalized least squares (GLS) estimator

α̂GLS = (X′V−1X)−1X′V−1y (14)

to obtain estimates for the model coefficients. It is easy to see that the GLS estimator is
unbiased:

E (α̂GLS |X) = (X′V−1X)−1X′V−1 E(y |X) = (X′V−1X)−1X′V−1Xα = α

and has variance:

Var (α̂GLS |X) = (X′V−1X)−1X′V−1 Var(y)WX(X′V−1X)−1

= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1 = (X′V−1X)−1.
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Aitken’s theorem (Aitken 1936) states that the GLS estimator is not only unbiased, but
a best linear unbiased estimator (BLUE). The proof for the BLUE property is relatively
straightforward: with the modified data

ỹ = V−
1
2 y and X̃ = V−

1
2 X

where V−
1
2 is a matrix such that V−

1
2V−

1
2 = V−1, e.g. a Cholesky decomposition of V−1 the

GLS estimator is a variant of OLS:

α̂GLS = (X′V−1X)−1X′V−1y = (X̃′X̃)−1X̃′ ỹ (15)

therefore GLS is BLUE because this instance of an OLS estimator is BLUE. Conversely,
insofar as the conventional OLS estimator in equation (13) differs from GLS as in equation
(15), the latter cannot be BLUE and hence is inefficient (because less efficient than GLS).

Aitken’s theorem rests on the assumption that the matrix V is fixed and thus does not
depend on the values of the dependent variable y. If σ2 and Φ are unknown, as generally is
the case in practice, one has to use an estimate of V , say V̂ , which is based on the empirical
data and thus no longer independent from y. Thus, a crucial condition for Aitken’s theorem no
longer applies. Nevertheless, Kackar and Harville (1981) explicate conditions under which
coefficient estimates remain unbiased. Consider the expected value of a feasible generalized
least squares (FGLS) estimator with estimated V̂ :1

E (α̂ |X) = α + E
[
(X′V̂−1X)−1X′V̂−1(Zb + ε )

]
. (16)

If the expected value in the final term of Equation 16 is zero, the estimator is unbiased. This
is the case if V̂ is constant or depends only on X . As Kackar and Harville show, the expected
value of this term is also zero if V̂ is a symmetric and translation-invariant function of y.
They further show that these requirements are satisfied if V̂ is based on MLEs of σ2 and
Φ. The symmetry and translation invariance of V̂ depends only on how it is constructed. In
particular, it does not depend on the unbiasedness of the estimates of the variance parameters
σ2 and Φ. Therefore, the maximum likelihood estimates α̂ of the fixed effect coefficients of
a linear multilevel model are unbiased—even if σ2 and Φ are estimated with bias.2

While it is straightforward to demonstrate the unbiasedness of OLS and GLS estimators
of fixed-effects coefficients of linear multilevel models, showing the unbiasedness of the ML
estimator is more complicated. For the proof we adapt a more general theorem and proof
given in Kackar and Harville (1981). But before that, we discuss the following lemma on
which this proof depends:

Lemma 1. Let u be a random vector with components Ui. If u has a symmetric distribution
around zero (i.e., Pr(Ui ≥ u∗) = Pr(Ui ≤ −u∗) = Pr(−Ui ≥ u∗)) for each of its components
and if g is an odd function (i.e., g(−x) = −g(x) for all x), then the random variable G = g(u)
has a symmetric distribution around zero. Further, if its expectation exists, it is equal to zero.

1. This type of estimators includes feasible generalized least squares estimators known from the econometrics
of panel data (Baltagi 2008; Greene 2012) but notably also the maximum likelihood estimator for the fixed
effects-coefficients of multilevel models.

2. An explicit proof is given in Appendix A.4.
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The proof of the first claim of this lemma closely follows the one given by Kackar and
Harville (1981, 1257), but is a bit more explicit, while the second claim is based on a standard
result of probability theory.

Proof. First we show that g(u) and g(−u) have the same distribution. Let A refer to a subset
of the range of u and g(A) to the image of the set A with respect to the function g. Then,
because the distribution of u is symmetric

Pr(g(−u) ∈ g(A)) = Pr(−u ∈ A) = Pr(u ∈ A) = Pr(g(u) ∈ g(A))

We now turn to the two claims made in the lemma. Since g is an odd function, we have for
any real number x

Pr(G ≤ x) = Pr(g(u) ≤ x) = Pr(−g(u) ≥ −x) = Pr(g(−u) ≥ −x). (17)

Since u and −u have the same distribution, g(u) and g(−u) have the same distribution (i.e.,
Pr(g(−u) ≤ x) = Pr(g(u) ≤ x)). Together with the assumption that g is odd, this leads to

Pr(g(−u) ≥ −x) = Pr(g(u) ≥ −x) = Pr(−g(u) ≤ x) = Pr(−G ≤ x). (18)

From equations (17) and (18) it follows that Pr(G ≤ x) = Pr(−G ≤ x), which is the first
claim of the lemma.

Now let p(x) denote the density of the distribution of G = g(u) (i.e., Pr(G ≤ x) =∫ x
−∞ p(x) d x). If the integral

∫ 0
−∞ xp(x) d x is finite,3 then

E(g(u)) = E(G) =
∫ ∞

−∞
xp(x) d x =

∫ 0

−∞
xp(x) d x +

∫ ∞

0
xp(x) d x

=

∫ ∞

0
−xp(−x) d x +

∫ ∞

0
xp(x) d x

=

∫ ∞

0
−xp(x) d x +

∫ ∞

0
xp(x) d x

=

∫ ∞

0
(x − x)p(x) d x = 0,

which proves the second claim of the lemma. �

After establishing the above lemma, we can now turn to discuss the unbiasedness of
ML estimates of fixed-effects coefficients. If we assume that both the disturbances and the
random effects have a (multivariate) normal distribution with zero mean and covariance
matrices dependent on a vector θ of variance parameters, then log-likelihood can (as derived
above) be written as:

`(α, θ; y) = c − 1
2

log det(V (θ)) − 1
2
(y − Xα)′V (θ)−1(y − Xα) (19)

3. A well-known counter-example is the Cauchy distribution.
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where c is a summary that is computed only based on y and that does not depend on any
parameter in α of θ.

Taking the derivative for α and setting it to zero leads to the following equation for the
ML estimate

α̂ = [X′V (θ̂)−1X]−1X′V (θ̂)−1y. (20)

That is, V (θ) is the covariance matrix of y − Xα = Zb + ε (we use the modified notation
V (θ) to emphasise the dependence of the covariance matrix on the parameter vector θ).

Based on this setup we prove the following theorem:

Theorem 1. If the assumptions of the normal linear mixed model are satisfied, and if the
expectation of the ML estimate given by (20) exists, then α̂ is unbiased. That is,

E(α̂ |X) = α (21)

Proof. The argument stated in the main text implies that the difference between both sides
of equation (21) is

E(α̂ |X) − α = E
(
[X′V (θ̂)−1X]−1X′V (θ̂)−1[Zb + ε ]

)
(22)

The ML estimate α̂ is unbiased if (and only if) this difference equals zero. What therefore
remains to be shown is that the expectation on the right-hand side of the equation is equal
to zero. If V (θ̂) (and thus [X′V (θ̂)−1X]−1X′V (θ̂)−1) were constant, then this would simply
follow from the fact that the expectation of Zb + ε is zero by assumption. However V (θ̂)
depends on Zb + ε .

If one collects the error component vectors b and ε into the vector u = (b′, ε )′ then one
can define a function ψ(u) as

ψ(u) = [X′V (θ̂)−1X]−1X′V (θ̂)−1Ku, (23)

with K = (Z, I ) and Zb + ε = Ku , so that right-hand side of equation (22) is identical to
the expectation E(ψ(u)). By assumption, u has a symmetric distribution around zero (viz., a
multivariate normal distribution). Therefore, by Lemma 1, ψ(u) has zero expectation if each
of its elements is an odd function of u (i.e., if ψ(−u) = −ψ(u)). That is, what remains to be
shown is that ψ(u) is indeed an odd function. This is demonstrated in two steps: First it is
shown that ML estimator of the variance parameters θ is translation-invariant and even, and
second it is shown that this implies that ψ(u) is an odd function.

The first step of the proof is to show that the ML estimator of θ is translation-invariant
and even. These properties can be explained if we consider the ML estimator as a function
of the observations of the dependent variable, i.e.

θ̂(·) = argmax `(·; θ).

The ML estimator is called translation invariant if for any constant vector k

θ̂(y − Xk) = θ̂(y).
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Further, it is called even, if
θ̂(−y) = θ̂(y).

To demonstrate these properties of the ML estimator of θ, we utilise equation (20) to
construct the concentrated log-likelihood or profile log-likelihood, in which the dependence
on the fixed-effects coefficients α is eliminated:

`p(θ; y) = `(α̂θ, θ; y)

= c − 1
2

log det(V (θ)) − 1
2
[y − X α̂θ]′V (θ)−1[y − X α̂θ]

= c − 1
2

log det(V (θ)) − 1
2
y′[I − P(θ)]′V (θ)−1[I − P(θ)]y

(24)

with
P(θ) = X[X′V (θ)−1X]−1X′V (θ)−1

and
X α̂θ = P(θ)y

Since P(θ)X = X , for any vector k we have

[I − P(θ)]Xk = (X − X)k = 0.

hence
[I − P(θ)](y − Xk) = [I − P(θ)]y

and therefore
`∗(y − Xk; θ) = `∗(y; θ).

That is, the profile log-likelihood is a translation-invariant function of the observed values of
the dependent variable. Further, because `∗(y; θ) is a quadratic form in y, we have

`∗(−y; θ) = `∗(y; θ).

Since the profile log-likelihood is translation invariant, the ML estimator of θ is also
translation invariant:

θ̂(y − Xk) = argmax `∗(y − Xk; θ) = argmax `∗(y; θ) = θ̂(y).

Further its evenness implies the evenness of the ML estimator of θ:

θ̂(−y) = argmax `∗(−y; θ) = argmax `∗(y; θ) = θ̂(y)

Now that we have demonstrated that the ML estimator of θ is translation-invariant and
even, we show in the second step that this implies that the function defined in equation (23)
is an odd function of the error components u = (b′, ε )′. To this purpose it is convenient to
define

M(θ) = [X′V (θ)−1X]−1X′V (θ)−1

9



and
M̂(y) = M(θ̂(y))

so that we can write
α̂θ = M(θ)y

and
α̂ = M̂(y)y.

From the translation-invariance and the evenness of the ML estimate of θ follows

θ̂(y) = θ̂(y − Xα) = θ̂(Zb + ε ) = θ̂(Ku) = θ̂(−Ku).

hence
M(θ̂(y)) = M(θ̂(y − Xα)) = M(θ̂(Ku)) = M(θ̂(−Ku)).

and
M̂(y) = M̂(y − Xα) = M̂(Ku) = M̂(−Ku)

so that equation (23) becomes

ψ(u) = M̂(y)Ku = M̂(Ku)Ku.

We can therefore see that

ψ(−u) = M̂(K [−u])K [−u] = −M̂(−Ku)Ku = −M̂(Ku)Ku = −ψ(u),

that is, ψ(u) is an odd function. From this and the symmetry of distribution of u, we can
conclude with the help of Lemma 1 that, if the relevant expectation exists, it is

E(α̂(y; θ̂ |X) − α) = E(ψ(u)) = 0,

which concludes the proof of the theorem. �

The theorem proved in this section of the appendix establishes the unbiasedness of an ML
estimator of fixed-effects coefficients if it exists. However, this is a pre-condition that does
not need to be always satisfied. An obvious necessary condition is that there are sufficient
data to identify the estimates. That is, the number of observations at the lower-level and at
the upper-level should be larger than the number of parameters in the model. Some sufficient
conditions for the existence of ML estimates are discussed by Jiang (1999).

The above result that coefficient estimates are unbiased only applies to linear multilevel
models. It is well-known that multilevel logistic regression and other generalised linear mixed
models (GLMMs) such asmultilevel probit are subject to small-sample biases.4 Estimation of

4. In fact, maximum likelihood coefficient estimates exhibit a small-sample bias even in the case of
“conventional” logistic or probit regression without random effects. That is, coefficient estimates tend to
be systematically and substantially larger (in absolute size) than the corresponding true vales when the sample
size is small. Even worse, it might occur that no MLE for a particular sample exists, because of the problem of
separation (Zorn 2005).
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GLMMs is either computationally highly demanding (involving numerical integration using
methods such as multidimensional quadrature) or relies on approximations (most notably the
Laplace approximation, see Breslow and Clayton 1993; Pinheiro and Bates 1995; McCulloch
1997; Booth and Hobert 1999; Caffo, Jank, and Jones 2005). Approximation methods in
particular require large sample sizes to achieve (approximate) unbiasedness, but crucially the
relevant sample size here is the one at the lower level. In most political science applications—
and especially in the case of comparative cross-national analysis that motivated Stegmueller’s
study—the requirement of a large lower-level sample will typically be met.

A.4 REML for Linear Mixed Effects Models
In the main text we discuss restricted maximum likelihood estimators as a remedy for the
bias of ML estimates in variance components. Restricted maximum likelihood estimators
were introduced by Patterson and Thompson (1971) and can be interpreted as special cases
of modified profile likelihood estimators later introduced by Cox and Reid (1987). These
modified profile likelihood estimators have their use beyond multilevel modelling and an
application of the modified profile likelihood principle to some common example may help
to understand how REML estimators are able to improve over ML estimators of variance
parameters.

Recall that the log-likelihood function of a linear mixed effects model is given by

`(α, θ; y) = c − 1
2

log det(V (θ)) − 1
2
(y − Xα)′V (θ)−1(y − Xα) (25)

where
V (θ) = ZΦZ′ + σ2I

In the previous section, we already employed the fact that, for given values of the variance
parameters, ML estimates for the fixed effects coefficients in α can be obtained by the single
GLS-step:

α̂θ = M(θ)y
where

M(θ) = [X′V (θ)−1X]−1X′V (θ)−1.

The concentrated log-likelihood or profile log-likelihood can be constructed thus:

`p(θ; y) = `(α̂θ, θ; y)

= c − 1
2

log det(V (θ)) − 1
2
[y − X α̂θ]′V (θ)−1[y − X α̂θ]

= c − 1
2

log det(V (θ)) − 1
2
y′[I − P(θ)]′V (θ)−1[I − P(θ)]y

= c − 1
2

log det(V (θ)) − 1
2
y′V (θ)−1[I − P(θ)]y.

with
P(θ) = XM(θ) = X[X′V (θ)−1X]−1X′V (θ)−1.
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The last step here is based on

P(θ)′V (θ)−1 = V (θ)−1P(θ)

and
V (θ)−1P(θ)P(θ) = V (θ)−1P(θ).

The REML estimator proposed by Patterson and Thompson (1971) then is the value of θ that
maximises

`REML(θ; y) = `p(θ; y) − 1
2

ln det
(
XV (θ)−1X

)
. (26)

The REML estimator can be derived by integrating out the coefficient vector α from the
full likelihood function:∫

exp(`(α, θ; y)) d α = exp(c) det(V (θ))− 1
2

∫
exp

(
−1

2
(y − Xα)′V (θ)−1(y − Xα)

)
d α

= exp(c) det(V (θ))− 1
2 exp

(
−1

2
y′V (θ)−1y

)
·
∫

exp
(
1
2
y′V (θ)−1Xα − 1

2
α′X′V (θ)−1Xα

)
d α

= exp(c) det(V (θ))− 1
2 exp

(
−1

2
y′V (θ)−1y

)
· det

(
X′V (θ)−1X

)− 1
2 exp

(
1
2
y′V (θ)−1X

(
X′V (θ)−1X

)− 1
2
X′V (θ)−1y

)
= exp(c) det(V (θ))− 1

2 det
(
X′V (θ)−1X

)− 1
2

· exp
(
−1

2
y′

[
V (θ)−1 − V (θ)−1X

(
X′V (θ)−1X

)− 1
2
X′V (θ)−1

]
y

)
= exp(c) det(V (θ))− 1

2 det
(
X′V (θ)−1X

)− 1
2

· exp
(
−1

2
y′V (θ)−1[I − P(θ)]y

)
= det

(
X′V (θ)−1X

)− 1
2 exp(`p(θ; y))

= exp(`REML(θ; y))

The relevant integration formula can be found as Theorem 15.12.1 in Harville (1997, 322).
A linear regression model with i.i.d. disturbances can be considered as a special case of a

linear mixed model with V = σ2I . We now show that the unbiased variance estimator of the
residual variance σ2 is a special case of REML. First note that log-likelihood function with
respect to the disturbance variance σ2 is

`p(σ2; y) = c − n
2

lnσ2 − 1
2σ2 (y − X α̂ OLS)′(y − X α̂OLS) = c − n

2
lnσ2 − 1

2σ2 y
′(I − PX)y
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where n is the number of observations, c a data-dependent constant (i.e., not dependent on
the parameters α and σ2) and PX = X[X′X]−1X′ (Harville 1997, 166ff). The corresponding
REML objective function is

`REML(σ2; y) = c − n
2

lnσ2 − 1
2σ2 y

′(I − PX)y −
1
2

ln det
(

1
σ2 X

′X

)
= c − n − k − 1

2
lnσ2 − 1

2σ2 y
′(I − PX)y −

1
2

ln det (X′X)

since det
(
σ−2X′X

)
= (σ−2)k+1 det (X′X), because X′X is a (k + 1) × (k + 1) matrix, and

therefore 1
2 ln det

(
1
σ2 X

′X
)
= 1

2 ln det (X′X) − k+1
2 lnσ2. Setting ∂`REML(σ2)/∂σ2 to zero

leads to
−n − k − 1

2
1
σ2 +

1
2σ4 y

′(I − PX)y = 0

σ2(n − k − 1) = y′(I − PX)y
the solution of which is

σ̂2 =
(y − X α̂OLS)′(y − X α̂OLS)

n − k − 1
.

A.5 REML, Firth’s Penalised Likelihood, and Bayes Estimators
It is noteworthy that the penalty term in the REML objective function is related to the
information matrix with respect to α:

1
2

ln det
(
XV (θ)−1X

)
=

1
2

ln det
(
−∂`(α, θ; y)

∂α∂α′

)
=

1
2

ln det
(
−E

[
∂`(α, θ; y)
∂α∂α′

] )
and is equal to the logarithm of Jeffreys’ uniform prior (Jeffreys 1946) with respect to the
coefficient vector α for given θ:

pJf(α |θ) = det
(
−E

[
∂`(α, θ; y)
∂α∂α′

] ) 1
2

(whereE(A) refers to the expected value of a randommatrix A). Note that in the linear-normal
case

−E
(
∂`(α, θ; y)
∂α∂α′

)
= −∂`(α, θ; y)

∂α∂α′
= XV (θ)−1X .

However, this should not lead to the misunderstanding that REML is based on a Bayesian
maximum a posteriori value of the coefficient vector α (given the variance parameters).
A maximum a posteriori (MAP) value of α with a Jeffreys prior would be obtained by
maximising the posterior

p(α |θ, y) = p(α |θ, y)pJf(α |θ)

= exp
[
`(α, θ; y) + 1

2
ln det

(
−E

∂`(α, θ; y)
∂α∂α′

)]
.

(27)
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In the log-posterior, the modification of the log-likelihood thus has the opposite sign of the
penalty term in the REML objective function. Further, in the normal-linear case, pJf(α |θ)
varies only with the variance parameters in θ, but not with the coefficients vector α. That is,
for given variance parameters θ, the MAP value of α is identical to the (conditional) MLE.

It is nevertheless tempting to attribute the bias reduction achieved by REML to the
involvement of Jeffreys’ prior. Firth (1993) proposes a method to correct or at least to reduce
the finite sample bias of maximum likelihood estimators and draws a connection between
his bias-corrected MLEs and MAP estimators with Jeffreys’ prior. Firth’s method applies to
models where the log-likelihood function is non-linear in the parameters. For example, in
case of logistic regression, his method involves maximising

`∗(α; y) = `(α; y) + 1
2

ln det
(
−E

∂`(α, θ; y)
∂α∂α′

)
instead of the log-likelihood function `(α; y). Note that the value of α thatmaximises `∗(α; y)
(the penalised likelihood estimate) will be different from the one that maximises `(α; y) (the
MLE) in most generalised linear models with coefficient vector α and will usually have a
smaller bias than theMLE. An exception are linear regression models with normal distributed
errors. In this case the MLE of the coefficient vector (which is identical to the OLS estimate)
is already unbiased, while “penalty term” is constant with respect to the coefficient vector:

1
2

ln det
(
−E

∂`(α, θ; y)
∂α∂α′

)
=

1
2

ln det (X′X) .

Modifying the log-likelihood of a linear regression model with normal errors in the manner
proposed by Firth (1993) will therefore not serve as a correction of any bias in the MLE of the
regression coefficients, however the MLE of the coefficients is unbiased in this setup anyway.

Adding Jeffrey’s prior with respect to the error variance in a normal-linear regression
leads to results different from REML or bias-corrected estimator of the error variance. The
second derivative of the log-likelihood for σ2 in this case is:

∂2`(α, σ2; y)
(∂σ2)2

=
n

2(σ2)2
− 1
(σ2)3

(y − Xα)′(y − Xα) = n
2(σ2)2

− S2

(σ2)3

(with S2 = (y − Xα)′(y − Xα)).
Therefore, if Firth’s penalised log-likelihood with respect to σ2 takes the form

`∗(α, σ2; y) = `(α, σ2; y) + ln
(
−∂

2`(α, σ2; y)
(∂σ2)2

)
= −n

2
ln(σ2) − S2

2σ2 + ln
(
− n

2(σ2)2
+

S2

(σ2)3

)
= −n

2
ln(σ2) − S2

2σ2 + ln
(
− nσ2

2(σ2)3
+

S2

(σ2)3

)
= −n

2
ln(σ2) − S2

2σ2 + ln
(
−n

2
σ2 + S2

)
− 3 ln(σ2)
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= −n + 6
2

ln(σ2) − S2

2σ2 + ln
(
S2 − n

2
σ2

)
.

The derivative for σ2 is

∂`∗(α, σ2; y)
∂σ2 = −n + 6

2
1
σ2 +

S2

2(σ2)2
− 1

2
n S2 − σ2

That is, a necessary condition for a value of σ2 that maximises the penalised log-likelihood
is that this derivative is zero.

An unbiased estimator is
σ̂2 =

S2

n − k − 1
,

substituting it into the formula for the derivative gives:

∂`∗(α, σ2; y)
∂σ2

����
σ2=σ̂2

= −n + 6
2

1
σ̂2 +

S2

2(σ̂2)2
− 1

2
n S2 − σ̂2

= −n + 6
2

n − k − 1
S2 +

S2

2

(
n − k − 1

S2

)2
− 1

2
n S2 − S2

n−k−1

= −(n + 6)(n − k − 1)
2S2 +

(n − k − 1)2
2S2 − 1

S2
n(n − k − 1)

2(n − k − 1) − n
.

This expression is generally not equal to zero, which means that the unbiased estimator of the
error variance in a linear regression with normal distributed errors does not maximise Firth’s
penalised log-likelihood. As argued earlier, the unbiased estimator of the error variance is
a special case of a REML estimator. We can therefore conclude from this counterexample
that the REML estimator is not identical to Firth’s bias reduction technique and also is not a
Bayes estimator with a Jeffreys prior.

A.6 REML for Generalized Linear Mixed Models
Generalised linear mixed models (GLMMs) that go beyond the normal-linear type pose
particular challenges in addition to those involved in the estimation of linear mixed models,
on the one hand, and generalised linear models (without random effects), on the other hand.
First, they lead to likelihood functions that involve (sometimes high-dimensional) integrals
that do not have a closed-form solution. Second, due to the non-linearity in the link between
coefficients and the conditional expectation of the response variable, coefficient estimates
inevitably are biased in small samples (McCullagh and Nelder 1989) and it may be difficult
to establish how quickly this bias vanishes as the sample size increases (for bias correction
in generalised linear models, see Firth 1993). So the relatively reassuring result about the
unbiasedness of estimators for parameters in normal-linear mixed model proved in section
A.3, does not necessary carry over to generalised linear mixed models.5

5. This makes it all the more surprising that the bias found by Stegmueller (2013) in coefficient estimates of
a multilevel probit-model is smaller than the one he finds for a linear multilevel model.
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In the following we first present the structure of generalised linear mixed models and
discuss how ML and REML estimators would work in this type of models. If f (y |b; α, σ2)
is the density or probability mass function of the conditional distribution of the response for
given values of the random effects vector, then the log-likelihood function for a generalised
linear mixed model takes the form of the integral

`(α, θ; y) = c − 1
2

ln det(Φ) + ln
∫

f (y |b; α, σ2) exp
[
−1

2
b′Φ−1b

]
d b (28)

for which a solution formula exists only if the conditional distribution of y given b is normal.
In the absence of a solution formula, the integral involved in the log-likelihood function of
generalised linear mixed models can only approximately be computed. The chief analytical
approximation in use is the Laplace approximation (Breslow and Clayton 1993), whereas the
most widely used numeric approximations are Gauss-Hermite quadrature and Monte Carlo
integration (McCulloch 1997; Booth and Hobert 1999; Caffo, Jank, and Jones 2005).

The crucial advantage of the Laplace approximation, introduced by Breslow and Clayton
(1993) as penalised quasi-likelihood (PQL), is that it makes it easy to translate the concept of
restricted maximum likelihood to generalised linear mixed models beyond the normal-linear
case. The Laplace approximation is given by

`(α, θ; y) ≈ c − 1
2

ln det(Φ) + ln f (y | b̃; α, σ2) − 1
2

ln det
(
K̃ +Φ−1

)
− 1

2
b̃′Φ−1 b̃, (29)

where b̃ maximises the integrand in equation (28) or, equivalently, its logarithm

ln f (y |b; α, σ2) − 1
2
b′Φ−1b

and
K̃ = −

(
∂2 ln f (y |b; α, σ2)

∂b∂b′

)
b=b̃

is the Hessian of ln f (y |b; α, σ2) evaluated at b = b̃.
If the conditional distribution of the response is in a exponential family, a generalised

linear mixed model is characterised by the linear predictor

ηi = Xα + Zb,

the conditional mean
µi = E

(
yi | b̃

)
,

the link function g(·) that gives
ηi = g(µi),

and conditional variance
Var(yi | b̃) = σ2aiv(µi)
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(where σ2 is the dispersion parameter, v(·) is the variance function, and ai are some pre-
determined weights, as they arise, for instance, because of the denominator of a binomial
distribution). Breslow and Clayton (1993) point out that the fixed-effects coefficients for
givenΦ can be estimated by maximising the Laplace approximated marginal likelihood (29)
by iteratively solving the GLS equation

X′Ṽ−1X α̂ = X′Ṽ−1y∗ (30)

where y∗ is the usual “working response” known from the GLM literature (McCullagh and
Nelder 1989) with components

y∗i = η̃i + (yi − µ̃i)
∂ηi

∂µi

and GLS weighting matrix
Ṽ = W̃−1 + ZΦZ′, (31)

where W̃−1 is the inverse of a diagonal matrix with diagonal elements

w̃ii = [σ2aiv(µ̃i)]−1
(
∂µi

∂ηi

)2
.

Linear mixed models are a special case of generalised linear mixed models where µi = ηi,
v(µi) = 1, and ai = 1. Multilevel probit models (as considered in the main text of this
paper) are characterised by the probit function (i.e., the inverse of the cumulative probability
function of the standard normal distribution) as link function, v(µi) = µi(1 − µi), and for
binary responses, ai = 1. (For binomial counts ai will be data-dependent.)

For the estimation of the variance parameters, Breslow and Clayton (1993) propose to
use

q(θ; y) = −1
2

det(Ṽ ) − 1
2
(y∗ − X α̂θ)Ṽ−1(y∗ − X α̂θ). (32)

as an objective function, which is analogous to the log-likelihood in the normal-linear case,
yet only with the linearized dependent variable y∗ instead of y and α̂θ is the solution to
equation (30). For a “REML-like” variant of PQL, Breslow and Clayton (1993) propose to
use instead the modified objective function

q∗(θ; y) = q(θ; y) − 1
2

det
(
XṼ−1X

)
. (33)

It should be noted that the accuracy of the Laplace approximation depends on the size of
the upper-level units (and not on their number). With smaller sizes of upper-level units,
the Laplace approximation may lead to bias (usually a downward bias of the variance
parameters). For dealing with such situations, bias-corrections based on a higher-order
Laplace approximation have been proposed (Breslow and Lin 1995; Lin and Breslow 1996)
as well as Monte-Carlo integration approaches, that allow to increase the accuracy of the
approximation of the integrals involved in the likelihood to any desired degree by increasing
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the number of Monte Carlo replicates (algorithms for automatically increasing the Monte
Carlo sample sizes have been proposed by Booth and Hobert 1999 and Caffo, Jank, and Jones
2005). How the “logic” of REML can be applied to these setups is much less straightforward,
but see McCullagh and Tibshirani (1990).

As an alternative that is computationally less demanding thanmethods based on numerical
or even analytical approximations and that at the same time is also more general by allowing
for non-normal distributions of the random effects b, Lee and Nelder (1996) developed
the so-called h-likelihood technique. They introduced this technique for the estimation of
the parameters of hierarchical generalised linear models (HGLMs), which also allow the
random effect vector b to have a non-normal distribution. That is, GLMMs are a special case
of HGMLs. A h-likelihood function for a HGLM with normal random-effects distribution is
almost identical to the Laplace approximation of the marginal likelihood given by equation
(29), the main difference being that the term−1

2 ln det
(
K̃ +Φ−1) is absent in the h-likelihood.

In fact the REML-like modifications to the h-likelihood technique discussed by Lee and Lee
2012, which form the basis of the software used for our Monte Carlo study of mixed probit
model estimation (Rönnegård, Alam, and Shen 2015), lead to an objective function that
is virtually identical to the REML-modification of PQL-objective function discussed by
Breslow and Clayton (1993).

A.7 Improved approximations of the distribution of test statistics
In the following we contrast the conventional approach to the construction of test statistics
for coefficients in linear multilevel models and assumptions about their distribution based
on classical maximum likelihood theory with the more accurate approaches based on a
t-distribution as discussed in the main text of the article.

Standard results of maximum likelihood theory (e.g. Gourieroux and Monfort 1995a,
180ff) imply that the ML estimates αML of the fixed effects coefficients in a linear multilevel
model have an asymptotic normal distribution with mean α and variance

AVar(α̂) =
(
−E

[
∂2`

∂α∂α′

] )−1

= (X′V−1X)−1,

if the model satisfies certain regularity conditions and is well specified, i.e. applies to the data
being analysed. (Again, V = ZΦZ′ + σ2 is the variance matrix of y.) That is, the larger the
sample, size the better can the distribution of the fixed effects coefficients be approximated by
such a normal distribution. Assuming that the dimension of α k+1, for any k+1-dimensional
constant vector c

z =
c′(α̂ − α)
SE(c′α̂) =

c′(α̂ − α)√
c′(X′V−1X)−1c

(34)

then has an asymptotic standard normal distribution. Further, for any constant k + 1 × h
matrix C with full rank h ≤ k + 1 the quadratic form

U = (α̂ − α)′C(AVar(C′α̂))−1C′(α̂ − α)
= (α̂ − α)′C(C′X′V−1XC)−1C′(α̂ − α)

(35)
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has an asymptotic χ2 distribution with h degrees of freedom.
Assuming these results, linear hypotheses of the form

c′α = d

are typically tested using the Wald t-test statistic

t =
c′α̂ − d

ŜE(c′α̂)
=

c′α̂ − d√
c′(X′V̂−1X)−1c

(36)

where V̂ = ZΦ(θ̂)Z′ + σ̂2 is an ML or REML estimate of V .
The consistency ofMLandREMLestimators implies that V̂ converges in probability toV ,

so multilevel software often ignores the variation in estimated standard errors and computes
p-values on the assumption that t also has an (asymptotic) standard normal distribution.
Similarly, linear hypotheses of the form

C′α = d

are typically tested using the quadratic Wald test statistic

W = (C′α̂ − d)′(C′XV̂−1XC)−1(C′α̂ − d) (37)

for which often an asymptotic χ2 distribution is assumed (see e.g. Gourieroux and Monfort
1995b, 81ff).

The test statistic in equation (36) is of particular practical importance since it used as “test
of statistical significance” of individual coefficients in α̂, in which case c is a vector with
one element equal to unity and the other elements equal to zero and d being equal to zero.
Confidence intervals are typically constructed using t as a pivotal quantity.

When is the sample size large enough so that asymptotic normality can be safely assumed
for the test statistic t? Our simulation results reported in the main text indicate that for two-
level models with small numbers m of upper-level units, Wald t-tests based on the assumption
of asymptotic normality may lead to anti-conservative results, i.e. too narrow confidence
intervals based on the t-statistic or, equivalently, to small p-values and thus potentially
incorrect results of test of statistical significance. Apparently, it is not the total sample size n
that is relevant for the distribution of the test statistics of certain coefficients, but the number
m of upper-level units.

Our results also show that one can do better, by assuming a t-distribution with the
appropriate degrees of freedom instead. In the following we discuss two cases where the
distribution of Wald t-test statistics can be derived exactly for finite samples. In the first case,
the correct degrees of freedom of the t-distribution increase with the total sample size n, but
in the second case, the correct degrees of freedom do not increase with n, but with the number
of upper-level units m. We use this second case as a motivation of the so-called m − l − 1
rule, for which we discuss more general conditions for applicability. Finally, we discuss more
general approaches to determining the appropriate degrees of freedom. We provide a brief
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summary of the approach of Giesbrecht and Burns (1985) to the single-constraint case. (See
Schaalje, McBride, and Fellingham 2002, for a more extensive discussion).

To illustrate the role of Student’s t-distribution for inference in (especially linear)
multilevel models, we first consider the simple case of a linear regression with normal
errors. Linear regression models with normal errors are one of the rare instances where the
distribution of Wald test statistics (under the null hypothesis) and the distribution of pivotal
quantities for the construction of confidence intervals can be derived exactly. Such a model
can be written as

y = Xα + ε,

where ε has a normal distribution with zero mean and variance σ2In or equivalently the
elements of ε are i.i.d. normal distributed each with zero mean and variance σ2.

When this model applies, the ML estimator is the OLS estimator, which can be expressed
as

α̂OLS = (X′X)−1Xy = α + (X′X)−1Xε

If X has full column rank k + 1 then (X′X)−1Xε has a normal distribution with expectation
0 and variance matrix σ2(X′X)−1. α̂OLS therefore also has a normal distribution with
expectation α and the same variance matrix. The unbiased estimator of the error variance is

σ̂2 =
(y − X α̂OLS)′(y − X α̂OLS)

n − k − 1
=

S2

n − k − 1
.

The standardised sum of squares S2/σ2

S2

σ2 =
1
σ2 (y − X α̂OLS)′(y − X α̂OLS)

=
1
σ2 y

′(In − X(X′X)−1X′)y

=
1
σ2 ε

′(In − X(X′X)−1X′)ε .

=
ε ′

σ
(In − X(X′X)−1X′) ε

σ
.

has a χ2 distribution with n − k − 1 degrees of freedom, because ε/σ has a standard normal
distribution and In − X(X′X)−1X′ is an idempotent matrix of rank n − k − 1 (Greene 2012,
1084).

Consider now the quantity

z =
c′(α̂OLS − α)
SE(c′α̂OLS)

=
c′(α̂OLS − α)√
c′σ2(X′X)−1c

=
c′(X′X)−1Xε√
σ2c′(X′X)−1c

The numerator has a normal distribution with zero expectation and variance σ2c′(X′X)−1c.
The denominator is the square root of this variance, hence z has a normal distribution with
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zero mean and unit variance. Since the distribution of z is functionally independent from the
model parameters α and σ2, z is a pivotal quantity. For the usual Wald t-test statistic we get

t =
c′(α̂OLS − α)
ŜE(c′α̂OLS)

=
c′(α̂OLS − α)√
c′σ̂2(X′X)−1c

=
c′(X′X)−1Xε√
σ̂2c′(X′X)−1c

=
z√

S2/σ2

n−k−1

.

The numerator is a standard normal distributed random variable, the denominator is the
square root of a χ2-distributed random variable divided by its n − k − 1 degrees of freedom.
Such a ratio is known to have a Student’s t-distribution with n − k − 1 degrees of freedom
(Greene 2012, 1062). If n − k − 1 is small, either because n is small or because k is large,
the distribution of t will markedly differ from a standard normal: Its variance will be larger,
i.e. Var(t) = 1+2/(n− k −3) and it will have a higher kurtosis. One of the consequences will
be that acknowledging such a t-distribution will lead to more conservative tests and p-values
than the assumption of a standard normal distribution.

To illustrate the consequences of clustering for the distribution of test statistics, we now
consider the extreme case of a “second-level only” model with random intercepts on the
second level and no individual-level errors. Such a model corresponds to the two-level case
with an intraclass-correlation of ρ = 1. Such a model can be written as

y = Xα + Zb,

where X is a n × (k + 1) matrix, Z is an n × m matrix composed of zeroes and ones and b is
an m-dimensional random vector with multivariate normal distribution with i.i.d. elements
each with variance φ. The between- and within-variation of y can be separated using the
matrices MZ = (Z′Z)−1Z′: and PZ = Z(Z′Z)−1Z′ = ZMZ :

y = PZ y + (I − PZ )y
PZ y = PZXα + Zb

(I − PZ )y = (I − PZ )Xα

because PZZ = Z . This implies that (I − PZ )y is not a random variable but a constant.
We consider now the case that matrix X can be separated into l + 1 columns collected

into Xb and k − l columns collected into Xw so that

Z′Xw = 0⇒ P′ZXw = 0
P′ZXb = Xb ⇒ (I − PZ )Xb = 0,

which means that the columns of Xw represent only those covariates that vary only within
groups, while columns of Xb represent covariates that vary only between groups and the
constant term of the linear model. We define the subvectors αb and αb of α to be composed
of the corresponding columns of X such that

Xα = Xbαb + Xwαw.
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We thus get

PZ y = Xbαb + Zb (38)
(I − PZ )y = Xwαw (39)

Equation (39) does not contain a random element, hence an “estimate” of αw can be computed
by solving an over-determined linear system of equations, for which the solution exists by
assumption (we are assuming here that the model is correct):

(X′wXw)−1X′w(I − PZ )y = αw

BecauseMZPZ = MZ andMZZ = Im, equation (38) is equivalent to a group-level regression
model:

PZ y = Xbαb + Zb ⇒
MZ y = MZXbαb + b or

ȳ = X̄bαb + b

where ȳ = MZ y and X̄b = MZXb. The j-th element of the m-dimensional vector ȳ contains
the mean of all elements of y for which the elements of the j-th column of Z equal unity and
j-th row of X̄b contains the means of the corresponding rows of X̄b. The ML estimator in
this case is again an OLS estimator:

α̂b = (X̄′bX̄b)−1X̄′b ȳ

An unbiased estimator of the variance parameter φ is:

φ̂ =
( ȳ − X̄bα̂b)′( ȳ − X̄bα̂b)

m − l − 1

The Wald t-statistic for αb becomes:

t =
c′(α̂b − αb)
ŜE(c′α̂b)

=
c′(X̄′bX̄b)−1X̄′bb√
φ̂c′(X̄′bX̄b)−1c

.

For the same reasons as above, this statistic has a Student’s t-distribution with m − l − 1
degrees of freedom. This is a direct example of the m − l − 1 rule. However, there may
be other instances where this m − l − 1 may be used to at least approximate the distribution
of a Wald t-test statistic. The rationale behind the rule is easiest to grasp in the multiple
equations formulation of a two-level model with cross-level interactions as described above
by equations (2), (3), and (4). If one interprets equations (3) and (4) as regressions with a0 j
and a1 j as dependent variables then a t-distribution with m− l −1 degrees of freedom (where
j = 1, . . . ,m and l = 2) would be appropriate for testing hypotheses about α00, α01, α10, or
α11. Such an interpretation will be particularly suited for cases where the variance of εi j is
small relative to the variances of b0 j and b1 j .
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At least three textbooks on multilevel mixed effects models mention the m − l − 1
approximation to the degrees of freedom for testing context effects (Pinheiro and Bates
2000, 91-92; Raudenbush and Bryk 2002, 57-58; Snijders and Bosker 2012, 94-95). As
before, m denotes the number of clusters, l the number of contextual effects, and 1 is added
for the intercept. Apart from being implemented as default in the software package HLM
(Raudenbush, Bryk, and Congdon 2004), the approximation seems to be rarely used in
practice.

Various other techniques to provide a more flexible approximations to the distribution of
test statistics been developed in the literature. They are typically adaptations or generalisations
of Satterthwaite’s (1946) method. In contrast to the m − l − 1 rule, these approximations
estimate the degrees of freedom from the data and are therefore far more widely applicable.
In particular, such techniques can provide the approximate degrees of freedom for complex
multilevel designs, for which the m − l − 1 rule is not applicable (e.g. cross-classified
structures, structures with more than two levels, etc.). As an example we discuss the adaption
of Satterthwaite’s method to single-constraint tests by Giesbrecht and Burns (1985), which
has later been extended to multiple-constraints F-tests by Fai and Cornelius (1996). (See
Schaalje, McBride, and Fellingham 2002, for a more extensive discussion). To provide the
appropriate degrees of freedom for the approximation the distribution of the test statistic

t =
c′(α̂ − α)
ŜE(c′α̂)

=
c′(α̂ − α)√

c′(XV̂−1X)−1c

,

Giesbrecht and Burns (1985) propose as degrees of freedom of the approximating t-
distribution

df =
2(c′(XV̂−1X)−1c)2

Var(c′(XV̂−1X)−1c)
where Var(c′(XV̂−1X)−1c) is approximated by the multivariate delta method:

Var(c′(XV̂−1X)−1c) ≈ ∂c′(XV̂−1X)−1c

∂θ′
AVar(θ̂)∂c

′(XV̂−1X)−1c

∂θ
.

Kenward and Roger (1997) provide a further improved, yet computationally more complex
approximation to the distribution of t-test and F-test statistics.

The m − l − 1 and Satterthwaite approximation are not currently available in all major
statistics packages. To our knowledge, SAS is the only package that implements these method
for generalised linear mixed models such as mixed effects probit or logit. Even for linear
mixed models, they are often not readily available. For example, Stata has only recently (in
version 14) introduced them in the new dfmethod option to the mixed command. Moreover,
the advantages of using the Satterthwaite (or Kenward-Roger) methods are probably largest
when working with complex, non-hierarchical structures (such as cross-classified models).
When dealingwith the simple, hierarchical structures that are common in comparative politics
and studied by Stegmueller (2013), the simple m − l − 1 heuristic may perform quite well.
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B Further details on the simulation study

B.1 Monte Carlo simulation design
To test our claim that the inferential problems of frequentist mixed effects models stem from
using maximum likelihood (instead of restricted maximum likelihood) and from drawing on
the normal instead of the t-distribution with approximated degrees of freedom, we replicate
Stegmueller’s (2013) Monte Carlo simulation. The crucial dimension of comparison is the
size of the upper-level sample. Like Stegmueller (2013), we vary the number of clusters m,
which ranges from 5 to 30 in steps of 5, with each cluster having 500 lower-level observations.

Equations 40 and 41 describe the two basic data generating processes (DGP) for the linear
case. The DGPs are identical to those studied by Stegmueller (2013), but we use slightly
different notation for consistency with the above discussion. In the first variant of the DGP
(equation 40) the context-level variable w j has a simple additive effect on the (lower-level)
outcome yi j :

yi j = 0 + 0.25xi j + 0.2w j + b1 j + εi j (40)

Generally, xi j and w j are independent and normally distributed with means of 0 and standard
deviations of 1, just like in Stegmueller (2013). However, to test the robustness of the m− l−1
rule (see Figures 4 and B4), we additionally consider cross-cluster compositional differences
in xi j by randomly shifting cluster means away from 0. The random shifts have a mean of
0 and a standard deviation of 1. Accordingly, this introduces cross-cluster compositional
differences in xi j of 50%. Because this operation introduces additional (cross-cluster or
between) variation to xi j , we rescale xi j afterwards, so that it again has a mean of 0 and
standard deviations of 1. The residual/lower-level error εi j has a variance of 2 and the
upper-level random effect b1 j has a variance of 0.2222 in the baseline case with an intraclass
correlation of 0.10. Like Stegmueller (2013), we also considered intraclass correlations of
0.05 and 0.15 (by appropriately modifying the variance of b1 j). As in Stegmueller’s analysis,
this did not influence the results (see Figures 2 and B2). We therefore focuses on the case
ICC = 0.10 in the main article.

The second variant of the DGP additionally includes a cross-level interaction between xi j
and w j

yi j = 0 + 0.25xi j + 0.2w j + 0.1xi jw j + b1 j + b2 j xi j + εi j (41)

where b2 j is an additional random effect on the slope of xi j with a variance of 0.3. The
covariance between b1 j and b2 j is set to yield a correlation of approximately 0.39.

Again following Stegmueller (2013), we use the same basic DGPs for the generalized
linear/probit case. However, the DGPs in equations 40 and 41 are now used to construct a
latent continuous variable y∗i j . The dichotomous outcome variable for the probit model is 1
if y∗i j > 0 and 0 otherwise. Moreover, the variance of εi j is set to 1 in the probit case and the
variances and covariances of the upper-level random effects are modified to yield the same
correlations and intraclass correlations as in the linear case.

We conduct all simulations in R version 3.3.1, and estimate the linear mixed effects
models using the lmer function from the lme4 package with the default optimiser bobyqa
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(Bates et al. 2015). The probit mixed effects models are estimated using the hglm2 function
from the hglm package (Rönnegård, Alam, and Shen 2015), which allows for the application
of REML-type modifications to the PQL-technique, which is commonly used for parameter
estimation of generalised linear mixed models. Rönnegård, Alam, and Shen (2015) call their
estimation technique EQL1 and base it on Lee and Nelder (1996) and Lee and Lee (2012).
Yet the REML-like modification from Lee and Lee (2012) that Rönnegård, Alam, and Shen
(2015) use differs from Breslow and Clayton’s (1993) only in certain algorithmic details.
We performed Satterthwaite approximations using the lmerTest (Kuznetsova, Brockhoff,
and Bojesen Christensen 2015) package. Currently, however, these approximations are not
implemented for non-linear models.

B.2 Additional results
For reasons of space restrictions, only a subset of our Monte Carlo simulation results are
reported in the main text of our article. Thus Figure 1 in the main text shows the simulated
distribution of estimates of a context effect coefficient, with 1,000, and 10,000 replications
using Stegmueller’s settings for the random seed, as well as 1,000 replications using random
seeds that vary across settings. Figure B1 shows the distribution of the estimates of all
constitutive terms of models that extend those of Figure 1 by a cross-level interaction model:
the main effect coefficient βx of an individual-level covariate, the main effect coefficient βz
of a contextual covariate, and the coefficient βxz of a cross-level interaction term. The results
are essentially the same as in Figure 1: The apparent “bias” of coefficient estimates is closer
to zero for larger Monte Carlo sample sizes (i.e. 10,000 replications) and with independent
random seeds is as often larger than zero as it is smaller than zero.

Figure 2 in the main text shows simulation results about the performance of ML and
REML estimators (or quasi-ML and quasi-REML estimators in case of probit models) of
a random intercept variance parameter in multilevel models with a contextual effect but no
cross-level interaction and an intra-class correlation (ICC) equal to 0.1. Figure B2 shows
the results for models extended by a cross-level interaction and various settings of the ICC.
Again, the depicted results corroborate those of the corresponding figure in the main text:
Using REML instead of ML greatly reduces the bias in the estimates of the variances of
random intercepts and random slopes, to a degree at which it is almost negligible.

In similar way as before, Figure B3 presents results from the extended simulation study
with cross-level interactions. It corresponds to Figure 3 in the main text and shows how the
choice of the estimator (ML or REML in case of linear models; quasi-ML or quasi-REML in
case of probit models) for the variance parameters and the choice of the assumed sampling
distribution of test statistics contribute to the accuracy of confidence intervals for coefficients.
In contrast to Figure 3 it describes the performance of confidence intervals for the coefficients
of main and interaction effects, but like Figure 3 it shows the results only for an ICC value of
0.1. It mirrors the results of that figure in that neither the choice of the estimator nor of the
sampling distribution of test-statistics is sufficient for accurate inference and that both have
to be chosen correctly.
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Finally, Figure B4 compares the m − l − 1 rule and the Satterthwaite approximation in
terms of accuracy of the confidence intervals for the main and interaction effect coefficients
in the cross-level interaction models that were already the topics of the previous four figures.
However, it covers two variants of the simulation study the results of which were shown in
the previous figure: In the variant the lower-level covariate has no compositional differences
between upper-level units, in the second variant 50% of the variance of the covariate is
between upper-level units. Like Figure 4 in the main text, it demonstrates that the m − l − 1
rule and the Satterthwaite approximation give results that are almost indistinguishable from
each other.
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Figure B1: Performance of Point Estimates of All Three Constitutive Terms of a Cross Level
Interaction in Multilevel Linear and Probit Models
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Note: The figure displays relative biases of maximum likelihood point estimates (in % of the true effect size).
Vertical lines depict 95% Monte Carlo confidence intervals for these results. Because the results are displayed
as bias in percent (i.e., average deviation from the true effect measured as percent of the true effect), we estimate
the 95% confidence intervals as: CI95 = 100 ·

((
b̄ ± 1.96SD(b)

/√
M

)
− β

)/
β, where b is the coefficient

estimate of interest, β is the true effect, and M is the number of Monte Carlo trials). The horizontal zero line
denotes the reference of no bias. Black triangles replicate the results presented the left column (“Estimate”)
of Figure 5 on page 757 in Stegmueller (2013). We additionally present two modifications of Stegmueller’s
analysis. The first (black circles) increases the number of replications from 1,000 to 10,000, leaving everything
else as is. The second (gray squares) follows Stegmueller in using only 1,000 replications, but specifies different
random number seeds for the different experimental conditions.27



Figure B2: Performance of Estimators of Random Intercept Variances and Random Slopes
in Multilevel Linear and Probit Models
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Note: The figure displays relative bias (in % of true size) in variance estimates for the random
intercept. Vertical lines depict 95% confidence intervals. We estimate the 95% confidence
intervals as: CI95 = 100 ·

((
¯̂φ ± 1.96SD(φ̂)

/√
M

)
− φ

)/
φ, where ¯̂φ is the average of the

estimates of the random intercept variance, φ is the true random intercept variance, and M is
the number of Monte Carlo trials). The horizontal zero line denotes the reference of no bias.
This figure has no correspondence in Stegmueller 2013.
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Figure B3: Performance of Confidence Intervals of All Three Constitutive Terms of a Cross
Level Interaction in Multilevel Linear and Probit Models
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Note: The figures shows percentage point deviations of actual coverage rates from the nominal value of
95%. The horizontal zero line denotes the reference of no bias (i.e., actual equals nominal coverage
rate). The dashed horizontal lines indicate 95% test intervals and are constructed as follows: TI95 =

0 ± 100 · 1.96
√

0.95(1 − 0.95)/M , where M is the number of Monte Carlo trials. For an accurate estimator of
the 95% confidence interval (i.e., one that has an actual coverage rate of 95%), the estimated actual coverage
rate based should fall into TI95 in 95% of the time. It is in this sense that estimated coverage rates falling outside
TI95 constitute statistically significant evidence against an accurate coverage rate. From the top to the bottom
row, this figure corresponds to the right-hand panels ‘CI non-coverage’ of Figures 3 (p. 755), Figures 4 (p.
756), and Figure 5 (p. 757) in Stegmueller 2013.
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FigureB4: Performance ofDegrees of FreedomApproximations for the Sampling distribution
of Test Statistics for All Three Constitutive Terms of a Cross Level Interaction in Linear
Multilevel Models
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C Improved Methods for Inference about Multilevel Mod-
els with Few Clusters in R

There are two major packages that can be used in multilevel analysis in R: package nlme
(Pinheiro et al. 2018), which usually is part of a regular R installation due to its status as a
“recommended” package, and package lme4 (Bates et al. 2015), which needs to be separately
installed, usually from the “Comprehensive RArchive Network” (CRAN). The following two
subsections describe how the improved methods for inference about multilevel models–using
the REML estimator and using a t-distribution for confidence intervals, hypothesis tests and
p-values–with few clusters can be applied with each of these two packages. In both instances,
the data and model of the empirical application from Steenbergen and Jones (2002) discussed
at the end of the main part of the paper. We will not discuss the data preparation for this
application, but an R-script for this is provided with the replication material.6 The data is
loaded into the R session using the code:

load("steenbergen-jones-data.RData")

This assumes that the data file "steenbergen-jones-data.RData" is located in the working
directory of the current R session. The data file contains a single data frame, with variables:

Variable name Description

support Respondents’ support for the EU
tenurez A county’s tenure within the EU (standardized) to zero mean and

unit variance
tradez A county’s within-EU trade (standardized)
gdpz A county’s GDP per capita (standardized)
inflz A county’s Inflation (standardized)
inclow Dummy variable indicating whether the respondent is in the

lowest income quartile
inchi Dummy variable indicating whether the respondent is in the the

highest income quartile
income A factor variable with four levels for respondents’ membership

in an income quartile (This variable is not in the Stata-version of
the data set)

lright A variable that contains respondents’ left-right self-placement
oplead An indicator of opinion leadership (centred)
male A dummy variable for male gender

For origin and further details about the data, see the ReadMe.html of our replication
package as well as Steenbergen and Jones (2002).

6. This R-script generates the data in the same way as the Stata “genData.do”, which generates the data
for our replication of Steenbergen and Jones discussed in the article and used in the Stata illustration in the
following section.
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C.1 Improved Inference Methods with the nlme Package
The following code is used to estimate Steenbergen and Jones’ (2002) two-level model using
the package nlme. It involves the function lme(), which is called with a specification of the
dependent and independent variables as first argument, an argument tagged method= to select
the estimator (in this case maximum likelihood), an argument tagged random= that specifies
the random effects structure, and an argument tagged data= that specifies the data frame that
contains the dependent and independent variables:

sj.ml <- lme(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age,

method = "ML",

random = ~1 | country,

na.action = na.exclude, # Deal with missing values

data = steenbergen_jones_data)

The argument random=~1|country indicates that themodel should include a random intercept
that varies with the levels (values) of the factor variable country. To select the ML estimator
we have to explicitly ask for it, because REML is the default. To get information about
coefficient estimates, standard errors, test statistics and p-values, we (as usually) apply the
summary() function:

summary(sj.ml)

This leads to the output:

Linear mixed-effects model fit by maximum likelihood

Data: steenbergen_jones_data

AIC BIC logLik

43700.04 43794.74 -21837.02

Random effects:

Formula: ~1 | country

(Intercept) Residual

StdDev: 0.425438 1.831069

Fixed effects: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age

Value Std.Error DF t-value p-value

(Intercept) 5.421258 0.14124679 10757 38.38146 0.0000

tenurez 0.235522 0.14068641 9 1.67409 0.1284

tradez 0.329053 0.13150993 9 2.50212 0.0337

gdpz -0.498780 0.27512221 9 -1.81294 0.1033

inflz 0.338609 0.16509114 9 2.05104 0.0705

inclow -0.130189 0.04889183 10757 -2.66279 0.0078

inchi 0.089671 0.04542176 10757 1.97419 0.0484
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lright 0.034570 0.00883003 10757 3.91509 0.0001

olead 0.105053 0.02030881 10757 5.17280 0.0000

male1 0.025821 0.03568690 10757 0.72355 0.4694

age -0.011110 0.00107387 10757 -10.34606 0.0000

Correlation:

(Intr) tenurz tradez gdpz inflz inclow inchi lright olead male1

tenurez -0.132

tradez 0.129 -0.280

gdpz 0.370 -0.503 0.365

inflz 0.271 -0.362 0.377 0.701

inclow -0.044 0.001 0.005 -0.006 0.001

inchi -0.092 0.003 0.012 -0.001 0.005 0.224

lright -0.239 0.008 -0.002 0.001 0.002 0.015 -0.028

olead 0.019 -0.004 -0.001 -0.008 -0.011 0.057 -0.088 0.042

male1 -0.126 -0.002 -0.001 0.001 0.000 0.046 -0.028 -0.001 -0.118

age -0.315 0.000 0.007 -0.002 0.003 -0.119 0.067 -0.059 0.031 -0.023

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.0467052 -0.6444306 0.1088729 0.7577502 2.4460038

Number of Observations: 10777

Number of Groups: 14

As can be seen, the summary() function from the nlme package employs the so-called
within-between heuristic (cf., Schaalje, McBride, and Fellingham 2002), for the selection
of the degrees of freedom for the test statistics of of the coefficients. The within-between
heuristic equals the m− l − 1 heuristic for the case of direct context effects. Beware however,
that the within-between heuristic differs fundamentally from the m − l − 1 heuristic for the
case of cross-level interactions.

Overall then, to make use of the full set of methodological improvements suggested in
our paper for the case of direct context effects, one only needs to use the optional argument
method= appropriately to "REML" or simply to drop it, because "REML" is actually the default
setting:

sj.reml <- lme(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age,

random = ~1 | country,

na.action = na.exclude, # Deal with missing values

data = steenbergen_jones_data)

summary(sj.reml)

The output is
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Linear mixed-effects model fit by REML

Data: steenbergen_jones_data

AIC BIC logLik

43748.38 43843.07 -21861.19

Random effects:

Formula: ~1 | country

(Intercept) Residual

StdDev: 0.5332954 1.831578

Fixed effects: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age

Value Std.Error DF t-value p-value

(Intercept) 5.420907 0.1699667 10757 31.89393 0.0000

tenurez 0.235291 0.1754975 9 1.34071 0.2129

tradez 0.329125 0.1640793 9 2.00589 0.0758

gdpz -0.498034 0.3432000 9 -1.45115 0.1807

inflz 0.338932 0.2059839 9 1.64543 0.1343

inclow -0.129702 0.0488821 10757 -2.65336 0.0080

inchi 0.090128 0.0454130 10757 1.98464 0.0472

lright 0.034653 0.0088285 10757 3.92509 0.0001

olead 0.105046 0.0203059 10757 5.17317 0.0000

male1 0.025872 0.0356789 10757 0.72513 0.4684

age -0.011104 0.0010736 10757 -10.34241 0.0000

Correlation:

(Intr) tenurz tradez gdpz inflz inclow inchi lright olead male1

tenurez -0.135

tradez 0.135 -0.281

gdpz 0.383 -0.503 0.365

inflz 0.282 -0.363 0.378 0.701

inclow -0.036 0.001 0.004 -0.005 0.001

inchi -0.077 0.002 0.010 -0.001 0.004 0.224

lright -0.199 0.007 -0.002 0.001 0.002 0.015 -0.028

olead 0.016 -0.003 -0.001 -0.006 -0.009 0.057 -0.088 0.042

male1 -0.105 -0.002 -0.001 0.001 0.000 0.046 -0.028 -0.001 -0.118

age -0.262 0.000 0.005 -0.001 0.002 -0.119 0.067 -0.059 0.031 -0.023

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.0505486 -0.6445138 0.1093930 0.7574557 2.4478278

Number of Observations: 10777

Number of Groups: 14
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The difference between ML and REML in this case is that with REML the standard errors are
estimated slightly larger, so that the p-values have twice the size of their counterparts with
ML.

As mentioned above, the within-between heuristic fails in the case of cross-level
interactions. This is because the within-between rule equals the m − l − 1 rule only in
the absence of within-cluster variation of a predictor variable. That is, contextual predictors,
such as GDP, do not vary within upper-level units but only between them. However, in
case of a cross-level interaction, i.e. in interaction between a lower-level predictor variable
and an upper-level independent variable, the values of the corresponding product term vary
within the upper-level units. Therefore, the within-between rule will treat the interaction
term and the corresponding lower-level main effect as lower-level predictors. Our theoretical
discussion clarifies, however, that both the cross-level interaction term and the lower-level
main effect should be treated as contextual predictors, implying that the m− l−1 rule applies.
Our Monte Carlo simulation results corroborate this conclusion and vice versa question the
accuracy of the within-between heuristic. The Kenward-Roger method might be of help in
this case, but the package pbkrtest (Halekoh and Højsgaard 2014), which provides for the
computation of the Kenward-Roger degrees of freedom is not applicable to models estimated
with the nlme package. The situation is different for models estimated with the lme4 package,
which is discussed in the next subsection.

C.2 Improved Inference Methods with the lme4 Package
The package lme4 is not included in a standard installation ofR and therefore must be installed
as an add-on package. The “canonical” source for add-on packages is the “Comprehensive
R Archive Network” (CRAN) which has the web address https://cran.r-project.org.
Usually (in particular if one uses the RStudio https://rstudio.com interface for R), to
install lme4 it suffices to run

install.packages("lme4")

which causes this package to be installed, along with those packages on which lme4 depends
(i.e., the packages Matrix, Rcpp, and RcppEigen).

The code needed to get ML-estimates Steenbergen and Jones’ (2002) multilevel model
with the lme4 package is slightly different from the code for estimating it with the nlme
package:

sj4.ml <- lmer(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age

+ (1 | country),

REML = FALSE,

data = steenbergen_jones_data)

Here, the random effects structure is specified differently from the call to lme() of the nlme
package. Instead of a random= argument, the random effects specification is part of the
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model formula, where the term (1 country)| indicates that the model should include random
intercepts that vary across the levels (values) of the factor variable country. Again, REML
is the default setting, so in order to get ML estimates, we have to explicitly add the optional
argument REML = FALSE.

Again, with the function summary() we get model estimates, along with standard errors
and test statistics. However, in contrast to nlme, the summary() method function for objects
created with the lme4 package does not report degrees of freedom and p-values:

summary(sj4.ml)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

Data: steenbergen_jones_data

AIC BIC logLik deviance df.resid

43700.0 43794.7 -21837.0 43674.0 10764

Scaled residuals:

Min 1Q Median 3Q Max

-3.0467 -0.6444 0.1089 0.7578 2.4460

Random effects:

Groups Name Variance Std.Dev.

country (Intercept) 0.181 0.4254

Residual 3.353 1.8311

Number of obs: 10777, groups: country, 14

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.421258 0.141175 38.401

tenurez 0.235522 0.140615 1.675

tradez 0.329053 0.131443 2.503

gdpz -0.498780 0.274982 -1.814

inflz 0.338609 0.165007 2.052

inclow -0.130189 0.048867 -2.664

inchi 0.089671 0.045399 1.975

lright 0.034570 0.008826 3.917

olead 0.105053 0.020298 5.175

male1 0.025821 0.035669 0.724

age -0.011110 0.001073 -10.351

Correlation of Fixed Effects:

(Intr) tenurz tradez gdpz inflz inclow inchi lright olead male1

tenurez -0.132

tradez 0.129 -0.280
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gdpz 0.370 -0.503 0.365

inflz 0.271 -0.362 0.377 0.701

inclow -0.044 0.001 0.005 -0.006 0.001

inchi -0.092 0.003 0.012 -0.001 0.005 0.224

lright -0.239 0.008 -0.002 0.001 0.002 0.015 -0.028

olead 0.019 -0.004 -0.001 -0.008 -0.011 0.057 -0.088 0.042

male1 -0.126 -0.002 -0.001 0.001 0.000 0.046 -0.028 -0.001 -0.118

age -0.315 0.000 0.007 -0.002 0.003 -0.119 0.067 -0.059 0.031 -0.023

In order to get REML estimates, all one has to do when using the lme4 package is to
drop the argument REML = FALSE or explicitly change it to REML = TRUE. This leads to the
following code

sj4.reml <- lmer(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age

+ (1 | country),

REML = TRUE,

data = steenbergen_jones_data)

summary(sj4.reml)

or simply

sj4.reml <- lmer(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age

+ (1 | country),

data = steenbergen_jones_data)

summary(sj4.reml)

with the following result:

Linear mixed model fit by REML ['lmerMod']

Formula: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

Data: steenbergen_jones_data

REML criterion at convergence: 43722.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.0505 -0.6445 0.1094 0.7575 2.4478

Random effects:

Groups Name Variance Std.Dev.

country (Intercept) 0.2844 0.5333

Residual 3.3547 1.8316

Number of obs: 10777, groups: country, 14
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Fixed effects:

Estimate Std. Error t value

(Intercept) 5.420907 0.169967 31.894

tenurez 0.235291 0.175498 1.341

tradez 0.329125 0.164079 2.006

gdpz -0.498034 0.343200 -1.451

inflz 0.338932 0.205984 1.645

inclow -0.129702 0.048882 -2.653

inchi 0.090128 0.045413 1.985

lright 0.034653 0.008829 3.925

olead 0.105046 0.020306 5.173

male1 0.025872 0.035679 0.725

age -0.011104 0.001074 -10.342

Correlation of Fixed Effects:

(Intr) tenurz tradez gdpz inflz inclow inchi lright olead male1

tenurez -0.135

tradez 0.135 -0.281

gdpz 0.383 -0.503 0.365

inflz 0.282 -0.363 0.378 0.701

inclow -0.036 0.001 0.004 -0.005 0.001

inchi -0.077 0.002 0.010 -0.001 0.004 0.224

lright -0.199 0.007 -0.002 0.001 0.002 0.015 -0.028

olead 0.016 -0.003 -0.001 -0.006 -0.009 0.057 -0.088 0.042

male1 -0.105 -0.002 -0.001 0.001 0.000 0.046 -0.028 -0.001 -0.118

age -0.262 0.000 0.005 -0.001 0.002 -0.119 0.067 -0.059 0.031 -0.023

While it is possible to get REML-based standard errors and thus test statistics for the
coefficients, lme4 explicitly does not provide the infrastructure to conduct inferences in
terms of significance tests, confidence intervals or p-values, because there is no analytical
solution on how degrees of freedom should be calculated. The degrees of freedom can only
be approximated and there are competing heuristics to do so. Therefore, lme4 refrains to
implement a default. One way of getting p-values nevertheless is using the lmerTest package,
which overrides the lmer() function of the lme4 package with its own version. For the current
example, the model is therefor re-fitted with the lmerTest variant of lmer() and the summary
function is called again:

sj4LT.reml <- lmer(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age

+ (1 | country),

data = steenbergen_jones_data)

summary(sj4LT.reml)

While summary() now reports degrees of freedom and p-values alongwith estimates, standard
errors, and test statistics, the output appears less “user-friendly”:
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Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

Data: steenbergen_jones_data

REML criterion at convergence: 43722.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.0505 -0.6445 0.1094 0.7575 2.4478

Random effects:

Groups Name Variance Std.Dev.

country (Intercept) 0.2844 0.5333

Residual 3.3547 1.8316

Number of obs: 10777, groups: country, 14

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 5.421e+00 1.700e-01 1.197e+01 31.894 5.98e-13 ***
tenurez 2.353e-01 1.755e-01 8.978e+00 1.341 0.21295

tradez 3.291e-01 1.641e-01 8.966e+00 2.006 0.07595 .

gdpz -4.980e-01 3.432e-01 8.977e+00 -1.451 0.18077

inflz 3.389e-01 2.060e-01 8.964e+00 1.645 0.13443

inclow -1.297e-01 4.888e-02 1.076e+04 -2.653 0.00798 **
inchi 9.013e-02 4.541e-02 1.076e+04 1.985 0.04721 *
lright 3.465e-02 8.829e-03 1.076e+04 3.925 8.72e-05 ***
olead 1.050e-01 2.031e-02 1.076e+04 5.173 2.34e-07 ***
male1 2.587e-02 3.568e-02 1.076e+04 0.725 0.46839

age -1.110e-02 1.074e-03 1.076e+04 -10.342 < 2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:

(Intr) tenurz tradez gdpz inflz inclow inchi lright olead male1

tenurez -0.135

tradez 0.135 -0.281

gdpz 0.383 -0.503 0.365

inflz 0.282 -0.363 0.378 0.701

inclow -0.036 0.001 0.004 -0.005 0.001

inchi -0.077 0.002 0.010 -0.001 0.004 0.224

lright -0.199 0.007 -0.002 0.001 0.002 0.015 -0.028

olead 0.016 -0.003 -0.001 -0.006 -0.009 0.057 -0.088 0.042
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male1 -0.105 -0.002 -0.001 0.001 0.000 0.046 -0.028 -0.001 -0.118

age -0.262 0.000 0.005 -0.001 0.002 -0.119 0.067 -0.059 0.031 -0.023

It appears that the package lmerTest does not do anything to provide improved confidence
intervals, although some approximated degrees of freedom are clearly smaller than 10. That
is, the confidence intervals are identical irrespective of whether they are based on lme4 or
lmerTest model objects, i.e. in our example

confint(sj4.reml)

and

confint(sj4LT.reml)

give identical results:

Computing profile confidence intervals ...

2.5 % 97.5 %

.sig01 0.3021227400 0.653900119

.sigma 1.8068776643 1.855804738

(Intercept) 5.1307495120 5.711355557

tenurez -0.0603337230 0.531066669

tradez 0.0526560276 0.605546425

gdpz -1.0765440368 0.079987155

inflz -0.0082173849 0.685870132

inclow -0.2259803086 -0.034397949

inchi 0.0006783272 0.178663444

lright 0.0172702375 0.051870432

olead 0.0652657041 0.144841245

male1 -0.0440943000 0.095736994

age -0.0132141937 -0.009006406

To facilitate the use of inference techniques based on a t-distribution, one of the authors of
the paper created an R package called iimm (for “improved inference for multilevel models”),
which is currently available on Github (Elff 2018a). This package can be installed using:

devtools::install_github("melff/iimm")

If the “devtools” package is not installed on the system, it has to be first installed from CRAN
with

install.packages("devtools")

The package iimm essentially provides a single function lmer_t(), which adds degrees of
freedom, confidence intervals, and p-values to the results of lmer(). It allows for three
options for the computation of the degrees of freedom: a simple m − l − 1 heuristic (the
default setting), the Satterthwaite method from the lmerTest package (which are obtained
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without overriding the function lmer()) and the Kenward-Roger method from the pbkrtest
package. It should be noted that the three methods considerably differ in speed: the m− l − 1
heuristic is the fastest and the Kenward-Roger method the slowest.

The following code calls lmer_t() with each of the three methods and records the time:

t0 <- Sys.time()

sj4.reml.heur.t <- lmer_t(sj4.reml)

t1 <- Sys.time()

sj4.reml.Satter.t <- lmer_t(sj4.reml,method="Satterthwaite")

t2 <- Sys.time()

sj4.reml.KR.t <- lmer_t(sj4.reml,method="Kenward-Roger")

t3 <- Sys.time()

The object sj4.reml.heur.t now contains the estimates of the multilevel model from
sj4.reml and additionally degrees of freedom, confidence intervals and p-values based on
the m− l−1 heuristic. The sj4.reml.Satter.t contains this additional information based on
the Satterthwaite method while in sj4.reml.KF.t the additional information is based on the
Kenward-Roger method. The variables t0, t1, t2, and t3 contain the time points before and
after the respective calls to lmer_t() and thus allow to measure how long they take. The time
measurement indicates that the heuristic method takes about 0.02 seconds, the Satterthwaite
method takes 0.35 seconds, while the Kenward-Roger method takes almost 2 minutes(!):

> t1 - t0

Time difference of 0.01696873 secs

> t2 - t1

Time difference of 0.3486767 secs

> t3 - t2

A comparison of the model summaries obtained with the three methods shows that the
three methods lead to similar conclusions. The results of the Satterthwaite and Kenward-
Roger methods are almost identical, and give slightly more conservative degrees of freedom
than the heuristic method:

summary(sj4.reml.heur.t)

Linear mixed model fit by REML ['lmerMod']

t-tests use the Heuristic method.

Formula: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

Data: steenbergen_jones_data

REML criterion at convergence: 43722.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.0505 -0.6445 0.1094 0.7575 2.4478
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Random effects:

Groups Name Variance Std.Dev.

country (Intercept) 0.2844 0.5333

Residual 3.3547 1.8316

Number of obs: 10777, groups: country, 14

Coefficients:

Estimate Std.Err t value country Lower Upper Pr(>|t|)

(Intercept) 5.4209 0.1700 31.8939 13 5.0537 5.7881 9.899e-14 ***
tenurez 0.2353 0.1755 1.3407 9 -0.1617 0.6323 0.212872

tradez 0.3291 0.1641 2.0059 9 -0.0420 0.7003 0.075829 .

gdpz -0.4980 0.3432 -1.4511 9 -1.2744 0.2783 0.180685

inflz 0.3389 0.2060 1.6454 9 -0.1270 0.8049 0.134290

inclow -0.1297 0.0489 -2.6534 10765 -0.2255 -0.0339 0.007981 **
inchi 0.0901 0.0454 1.9846 10765 0.0011 0.1791 0.047210 *
lright 0.0347 0.0088 3.9251 10765 0.0173 0.0520 8.724e-05 ***
olead 0.1050 0.0203 5.1732 10765 0.0652 0.1448 2.343e-07 ***
male1 0.0259 0.0357 0.7251 10765 -0.0441 0.0958 0.468387

age -0.0111 0.0011 -10.3424 10765 -0.0132 -0.0090 < 2.2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

summary(sj4.reml.Satter.t)

Linear mixed model fit by REML ['lmerMod']

t-tests use the Satterthwaite method.

Formula: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

Data: steenbergen_jones_data

REML criterion at convergence: 43722.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.0505 -0.6445 0.1094 0.7575 2.4478

Random effects:

Groups Name Variance Std.Dev.

country (Intercept) 0.2844 0.5333

Residual 3.3547 1.8316

Number of obs: 10777, groups: country, 14

Coefficients:

Estimate Std.Err t value Df Lower Upper Pr(>|t|)

(Intercept) 5.4209 0.1700 31.8939 12.0 5.0505 5.7913 5.980e-13 ***
tenurez 0.2353 0.1755 1.3407 9.0 -0.1619 0.6324 0.212951
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tradez 0.3291 0.1641 2.0059 9.0 -0.0423 0.7005 0.075948 .

gdpz -0.4980 0.3432 -1.4511 9.0 -1.2747 0.2786 0.180768

inflz 0.3389 0.2060 1.6454 9.0 -0.1273 0.8052 0.134425

inclow -0.1297 0.0489 -2.6534 10759.4 -0.2255 -0.0339 0.007981 **
inchi 0.0901 0.0454 1.9846 10759.8 0.0011 0.1791 0.047210 *
lright 0.0347 0.0088 3.9251 10761.2 0.0173 0.0520 8.724e-05 ***
olead 0.1050 0.0203 5.1732 10762.5 0.0652 0.1448 2.343e-07 ***
male1 0.0259 0.0357 0.7251 10757.5 -0.0441 0.0958 0.468387

age -0.0111 0.0011 -10.3424 10758.3 -0.0132 -0.0090 < 2.2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

summary(sj4.reml.KR.t)

Linear mixed model fit by REML ['lmerMod']

t-tests use the Kenward-Roger method.

Formula: support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

Data: steenbergen_jones_data

REML criterion at convergence: 43722.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.0505 -0.6445 0.1094 0.7575 2.4478

Random effects:

Groups Name Variance Std.Dev.

country (Intercept) 0.2844 0.5333

Residual 3.3547 1.8316

Number of obs: 10777, groups: country, 14

Coefficients:

Estimate Std.Err t value Df Lower Upper Pr(>|t|)

(Intercept) 5.4209 0.1700 31.8938 12.0 5.0505 5.7913 5.796e-13 ***
tenurez 0.2353 0.1755 1.3407 9.0 -0.1618 0.6324 0.212905

tradez 0.3291 0.1641 2.0059 9.0 -0.0422 0.7004 0.075902 .

gdpz -0.4980 0.3432 -1.4511 9.0 -1.2745 0.2785 0.180720

inflz 0.3389 0.2060 1.6454 9.0 -0.1272 0.8051 0.134376

inclow -0.1297 0.0489 -2.6533 10759.4 -0.2255 -0.0339 0.007983 **
inchi 0.0901 0.0454 1.9846 10759.8 0.0011 0.1791 0.047218 *
lright 0.0347 0.0088 3.9249 10761.2 0.0173 0.0520 8.731e-05 ***
olead 0.1050 0.0203 5.1728 10762.5 0.0652 0.1449 2.348e-07 ***
male1 0.0259 0.0357 0.7251 10757.5 -0.0441 0.0958 0.468389

age -0.0111 0.0011 -10.3423 10758.3 -0.0132 -0.0090 < 2.2e-16 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Apparently, the additional computational burden of theKenward-Rogermethod in comparison
to the Satterthwaite method may not be worth its while.

The following code uses the function mtable() from the package memisc (Elff 2018b)
to compare estimates, standard errors, and p-values obtained with ML and REML, with and
without t-distribution based on the Satterthwaite method.

library(memisc)

# First we create a coefficient style

# that combines estimates and p-values

setCoefTemplate(pval=c(

est="($est:#)($p:*)",

p="(($p:#))"

))

# Second we construct ML and REML tables

mtML <- mtable("Normal" = sj4.ml,

coef.style="pval")

mtREML <- mtable(Normal = sj4.reml,

Satterthwaite = sj4.reml.Satter.t,

coef.style="pval")

# ... and combine them

c(ML=mtML,

REML=mtREML)

=============================================================

ML REML

------------ --------------------------

Normal Normal Satterthwaite

-------------------------------------------------------------

(Intercept) 5.421*** 5.421*** 5.421***
(0.000) (0.000) (0.000)

tenurez 0.236 0.235 0.235

(0.094) (0.180) (0.213)

tradez 0.329* 0.329* 0.329

(0.012) (0.045) (0.076)

gdpz -0.499 -0.498 -0.498

(0.070) (0.147) (0.181)

inflz 0.339* 0.339 0.339

(0.040) (0.100) (0.134)

inclow -0.130** -0.130** -0.130**
(0.008) (0.008) (0.008)

inchi 0.090* 0.090* 0.090*
(0.048) (0.047) (0.047)

lright 0.035*** 0.035*** 0.035***
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(0.000) (0.000) (0.000)

olead 0.105*** 0.105*** 0.105***
(0.000) (0.000) (0.000)

male1 0.026 0.026 0.026

(0.469) (0.468) (0.468)

age -0.011*** -0.011*** -0.011***
(0.000) (0.000) (0.000)

-------------------------------------------------------------

Var(residual) 3.353 3.355 3.355

-------------------------------------------------------------

Var(~1|country) 0.181 0.284 0.284

-------------------------------------------------------------

Total 10777 10777 10777

country 14 14 14

=============================================================

Significance: *** = p < 0.001; ** = p < 0.01;

* = p < 0.05

Note that the “failure” of the macro-level variables to have statistically significant
coefficients arises because of the large standard errors and not because of the small sizes
of the coefficients. That is, the negative result could be a consequence of multicollinearity
among the macro-level variables. It may be that macro-level predictors are important but
their influence is simply difficult to disentangle. This is corroborated by the output from
summary(sj4.reml), which shows that the estimates of the four contextual variables are
highly correlated. In such situations, it is advisable to conduct a test that involves several
coefficients simultaneously. In the following it is shown first how to conduct an F-test with
lmerTest and Satterthwaite denominator degrees of freedom and second how to do an F-test
with Kenward-Roger degrees of freedom and the pbkrtest package.

The following code shows such a test with the help of lmerTest:

library(lme4)

library(lmerTest)

# Note that lmer() now is modified by "lmerTest"

sj4LT.reml <- lmer(support ~ tenurez + tradez + gdpz + inflz

+ inclow + inchi + lright + olead + male + age

+ (1|country),

data = steenbergen_jones_data)

# First construct a matrix for contrasts to be tested

test.matrix <- function(model,test_these){

cf <- fixef(model)

cfn <- names(cf)

L <- diag(nrow=length(cf))

colnames(L) <- rownames(L) <- cfn
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L[test_these,]

}

macro.test.matrix <- test.matrix(sj4LT.reml,

c("tenurez","tradez","gdpz","inflz"))

# 'contest() conducts a multi-parameter Wald test

# an F-distribution where the denominator degrees

# of freedom are determined by the Satterthwaite method

contest(sj4LT.reml,

L = macro.test.matrix)

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

1 67.55859 16.88965 4 7.955639 4.999273 0.02594672

The multi-parameter F-test with Satterthwaite denominator degrees of freedom tells a
different story than the t-tests of the individual coefficients of the contextual variables:
the null hypothesis test that none of the contextual variables matters is rejected at 5% level
of significance.

The following code repeats the test using the pbkrtest package andKenward-Roger degrees
of freedom;

# For using the Kenward-Roger method we need a "null" model,

# the same set of observations:

sj4LT.reml.0 <- update(sj4LT.reml,

.~.-(tenurez + tradez + gdpz + inflz),

subset=is.finite(tenurez + tradez + gdpz + inflz))

# and then compare the "full" and the "null" model:

F-test with Kenward-Roger approximation; computing time: 320.58 sec.

large : support ~ tenurez + tradez + gdpz + inflz + inclow + inchi +

lright + olead + male + age + (1 | country)

small : support ~ inclow + inchi + lright + olead + male + age + (1 |

country)

stat ndf ddf F.scaling p.value

Ftest 5.3537 4.0000 8.9962 1 0.0174 *
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Obviously, the F-test both lead to the same conclusion, irrespective of whether the
Satterthwaite or the Kenward-Roger method is used to determine the denominator degrees of
freedom: the influence of contextual variables matters, their impact is statistically significant
at 5% level. However the test using the Kenward-Roger method takes much longer.

Note that the result is not biased by multiple testing, this would be the case if the tests of
the null hypothesis with respect to each single coefficient were stochastically independent.
This however is not the case. Instead, the joint F-tests takes into account the interdependence
among the coefficient estimates.
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C.3 Summary
This section can be summarized by the following remarks and recommendations:

1. Obtaining REML estimates in R is relatively straightforward for linear multilevel
models if one uses the “standard” packages nlme (Pinheiro et al. 2018) or lme4 (Bates
et al. 2015). REML is the default estimator for linear multilevel models when these
packages are used.

2. Obtaining t-tests with degrees of freedom determined by the m − l − 1 heuristic is
also straightforward with the nlme package. However, multi-parameter F-tests are not
supported with nlme. Also, the heuristic used by the nlme package to determine the
appropriate degrees of freedom breaks downwhen cross-level interactions are involved.

3. In the example application where the total number of individual observations (at
the lowest level) is large, the m − l − 1 heuristic, the Satterthwaite method and the
Kenward-Roger method lead to very similar results in terms of degrees of freedom
and hypothesis tests. However, the Kenward-Roger method is very slow, at least in its
current implementation.

4. If contextual variables are correlated, multicollinearity may negatively affect the
precision of coefficient estimates and negative outcomes of significance tests of
individual coefficients. In this case, joint multi-parameter tests may be preferable.

5. For inference about multilevel models, especially with a small number of large upper-
level units, lme4 (Bates et al. 2015), lmerTest (Kuznetsova, Brockhoff, and Christensen
2017), and iimm (Elff 2018a) may be the most useful combination. The pbkrtest
package (Halekoh and Højsgaard 2014) seems to be better suited for cases where both
the number of upper-level units and the total sample size is small.
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D Improved Methods for Inference about Multilevel Mod-
els with Few Clusters in Stata

This section explains how to obtain improved likelihood-based inference in Stata. The
illustration is based on the replication of Steenbergen and Jones’ (2002) two-level random
intercept model discussed in the main paper. Our replication package contains all information
necessary to obtain the analysis data that this illustration is based on. Thus everything that
follows can be replicated.

The Stata default, which runs the Steenbergen and Jones’ two-level random intercept
model, is the following call to Stata’s mixed command and associated output:

mixed support tenurez tradez gdpz inflz inclow inchi lright olead male age ///

|| cntry:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -21837.019

Iteration 1: log likelihood = -21837.019 (backed up)

Computing standard errors:

Mixed-effects ML regression Number of obs = 10,777

Group variable: cntry Number of groups = 14

Obs per group:

min = 621

avg = 769.8

max = 1,331

Wald chi2(10) = 222.01

Log likelihood = -21837.019 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

support | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

tenurez | .2331334 .1391883 1.67 0.094 -.0396707 .5059374

tradez | .3290533 .1314428 2.50 0.012 .0714302 .5866764

gdpz | -.3293457 .1815711 -1.81 0.070 -.6852185 .0265272

inflz | .3497982 .1704596 2.05 0.040 .0157035 .6838929

inclow | -.1301887 .0488669 -2.66 0.008 -.225966 -.0344114

inchi | .0896713 .0453986 1.98 0.048 .0006917 .1786509

lright | .0345704 .0088255 3.92 0.000 .0172727 .0518681

olead | .1050535 .0202984 5.18 0.000 .0652693 .1448377
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male | .0258214 .0356687 0.72 0.469 -.0440879 .0957307

age | -.0111103 .0010733 -10.35 0.000 -.013214 -.0090066
_cons | 5.465067 .1308397 41.77 0.000 5.208626 5.721508

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

cntry: Identity |

var(_cons) | .1809975 .07022 .0846134 .3871737

-----------------------------+------------------------------------------------

var(Residual) | 3.352813 .0457044 3.26442 3.4436

------------------------------------------------------------------------------

LR test vs. linear model: chibar2(01) = 466.50 Prob >= chibar2 = 0.0000

But as we explain in detail in the article, this output includes erroneous results. While
the estimated slope coefficients are unbiased, standard errors and random-effects parameters
are too small, and so are the p-values and 95% confidence intervals. As we further elaborate,
improving inference for mixed effects models necessitates two steps. First, we need to
estimate our mixed effects model using REML. Second, we need to construct confidence
intervals and p-values based on a t-distribution with approximated degrees of freedom.

Stata allows to implement both steps as options of its mixed command. For didactic
purposes, we will first discuss REML estimation and afterwards complement the degrees of
freedom approximation. Of course, practitioners should simply perform one single estimation
with both options specified.

As a first step, let us estimate the above-displayed model with REML. Note that currently
generalized linear mixed effects models cannot be estimated via REML in Stata; Commands
like meologit offer no reml option. But for linear mixed effects models, REML can be
performed by simply adding the option reml to our command:

mixed support tenurez tradez gdpz inflz inclow inchi lright olead male age ///

|| cntry:, reml

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -21861.582

Iteration 1: log restricted-likelihood = -21861.582

Computing standard errors:

Mixed-effects REML regression Number of obs = 10,777

Group variable: cntry Number of groups = 14
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Obs per group:

min = 621

avg = 769.8

max = 1,331

Wald chi2(10) = 209.35

Log restricted-likelihood = -21861.582 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

support | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

tenurez | .2329039 .1737206 1.34 0.180 -.1075822 .57339

tradez | .3291246 .1640823 2.01 0.045 .0075292 .65072

gdpz | -.3288531 .22662 -1.45 0.147 -.77302 .1153139

inflz | .3501325 .2127947 1.65 0.100 -.0669374 .7672024

inclow | -.1297018 .0488821 -2.65 0.008 -.225509 -.0338946

inchi | .0901283 .045413 1.98 0.047 .0011204 .1791362

lright | .0346528 .0088285 3.93 0.000 .0173492 .0519565

olead | .1050457 .0203059 5.17 0.000 .065247 .1448445

male | .0258719 .0356789 0.73 0.468 -.0440574 .0958012

age | -.011104 .0010736 -10.34 0.000 -.0132083 -.0089997
_cons | 5.464579 .1565523 34.91 0.000 5.157742 5.771416

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

cntry: Identity |

var(_cons) | .2844146 .1363317 .1111567 .7277263

-----------------------------+------------------------------------------------

var(Residual) | 3.354679 .0457426 3.266213 3.445542

------------------------------------------------------------------------------

LR test vs. linear model: chibar2(01) = 485.81 Prob >= chibar2 = 0.0000

If we compare this model output to the initial one estimated by ML, the most important
difference can be seen in the table displaying the “Random-effects Parameters”. Whereas
initially the variance of the random intercept (i.e., var(_cons))was estimated as .1809975, the
corresponding REML estimate is .2844146. As we explain in the article, ML underestimates
random effects when upper-level samples are small. This also affects standard error estimates,
and thereby again p-values and confidence intervals. Take for instance the “tradez” predictor.
Its standard error was initial estimated as .1314428 by ML, but has increased to .1640823
based on REML estimation. As one would expect, the lower-level predictors (e.g., inchi or
lright) remain unaffected.

Nevertheless, tradez remains statistically significant with p = 0.045 and a 95%
confidence interval that does not encompass 0— despite the fact that Stegmueller’s Bayesian
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credible interval does entail 0. This is because we have only performed the first of two
necessary steps. That is, while our standard error estimates are unbiased now, p-values and
confidence intervals are still based on the Normal distribution, although we have only 14
upper-level units (i.e., countries).

The necessary second step is thus to approximate the degrees of freedom and base
statistical inference on a t-distribution. This can be achieved by adding dfmethod() as
additional option. Again, dfmethod() currently only works for linear mixed effects models
in Stata. dfmethod() allows for several different methods. Repeated, residual, and ANOVA
are all inappropriate for typical comparative research (for an overview see Schaalje, McBride,
and Fellingham 2002). Practitioners should instead opt for satterthwaite given the usual
interest in a single-constraint Wald test:

mixed support tenurez tradez gdpz inflz inclow inchi lright olead male age ///

|| cntry:, reml dfmethod(satterthwaite)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -21861.582

Iteration 1: log restricted-likelihood = -21861.582

Computing standard errors:

Computing degrees of freedom:

Mixed-effects REML regression Number of obs = 10,777

Group variable: cntry Number of groups = 14

Obs per group:

min = 621

avg = 769.8

max = 1,331

DF method: Satterthwaite DF: min = 8.98

avg = 5,873.41

max = 10,762.50

F(10, 19.47) = 20.94

Log restricted-likelihood = -21861.582 Prob > F = 0.0000

------------------------------------------------------------------------------

support | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

tenurez | .2329039 .1737206 1.34 0.213 -.1601405 .6259483

tradez | .3291246 .1640823 2.01 0.076 -.0421848 .700434

gdpz | -.3288531 .22662 -1.45 0.181 -.8415867 .1838805
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inflz | .3501325 .2127947 1.65 0.134 -.1314278 .8316929

inclow | -.1297018 .0488821 -2.65 0.008 -.2255197 -.0338838

inchi | .0901283 .045413 1.98 0.047 .0011104 .1791462

lright | .0346528 .0088285 3.93 0.000 .0173473 .0519584

olead | .1050457 .0203059 5.17 0.000 .0652425 .144849

male | .0258719 .0356789 0.73 0.468 -.0440653 .095809

age | -.011104 .0010736 -10.34 0.000 -.0132085 -.0089995
_cons | 5.464579 .1565523 34.91 0.000 5.125516 5.803642

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

cntry: Identity |

var(_cons) | .2844146 .1363317 .1111567 .7277263

-----------------------------+------------------------------------------------

var(Residual) | 3.354679 .0457426 3.266213 3.445542

------------------------------------------------------------------------------

LR test vs. linear model: chibar2(01) = 485.81 Prob >= chibar2 = 0.0000

In comparing this third output to the prior second one, we see that the random effects and
standard error estimates remain unchanged. Also, the t-values remain unchanged, but now
they are explicitly called t-, rather than z-values, indicating that Stata now constructs p-values
and confidence intervals based on a t- and not the Normal distribution. Accordingly, we see
that the p-value for tradez changed from 0.045 to 0.076, although standard error and t-value
have not. Perfectly in line with Stegmueller’s Bayesian credible intervals, our likelihood-
based 95% confidence interval entails 0. Beware however, that regression tables produced
by esttab will report inference based on the Normal distribution even after dfmethod() has
been specified.

If practitioners are interested in the approximated degrees of freedom, they can specify a
third option dftable() and either request 95% confidence intervals (ci) or p-values (pvalue)
along with the degrees of freedom. Here, we opt for 95% confidence intervals:

mixed support tenurez tradez gdpz inflz inclow inchi lright olead male age ///

|| cntry:, reml dfmethod(satterthwaite) dftable(ci)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -21861.582

Iteration 1: log restricted-likelihood = -21861.582

Computing standard errors:

Computing degrees of freedom:
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Mixed-effects REML regression Number of obs = 10,777

Group variable: cntry Number of groups = 14

Obs per group:

min = 621

avg = 769.8

max = 1,331

DF method: Satterthwaite DF: min = 8.98

avg = 5,873.41

max = 10,762.50

F(10, 19.47) = 20.94

Log restricted-likelihood = -21861.582 Prob > F = 0.0000

----------------------------------------------------------------------------

support | Coef. Std. Err. DF [95% Conf. Interval]

-------------+--------------------------------------------------------------

tenurez | .2329039 .1737206 9.0 -.1601405 .6259483

tradez | .3291246 .1640823 9.0 -.0421848 .700434

gdpz | -.3288531 .22662 9.0 -.8415867 .1838805

inflz | .3501325 .2127947 9.0 -.1314278 .8316929

inclow | -.1297018 .0488821 10759.4 -.2255197 -.0338838

inchi | .0901283 .045413 10759.8 .0011104 .1791462

lright | .0346528 .0088285 10761.2 .0173473 .0519584

olead | .1050457 .0203059 10762.5 .0652425 .144849

male | .0258719 .0356789 10757.5 -.0440653 .095809

age | -.011104 .0010736 10758.3 -.0132085 -.0089995
_cons | 5.464579 .1565523 12.7 5.125516 5.803642

----------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

cntry: Identity |

var(_cons) | .2844146 .1363317 .1111567 .7277263

-----------------------------+------------------------------------------------

var(Residual) | 3.354679 .0457426 3.266213 3.445542

------------------------------------------------------------------------------

LR test vs. linear model: chibar2(01) = 485.81 Prob >= chibar2 = 0.0000

The output shows that the approximated degrees of freedom are far from what inference
based on the Normal distribution would require. Moreover, in this example the Satterthwaite
method approximates the same degrees of freedom as our m − l − 1 rule: 14 − 4 − 1 = 9.
Unfortunately, our intuitive and computationally very fast m − l − 1 rule is not among the
methods offered by dfmethod(), yet. This is particularly unfortunate, because dfmethod()
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does not work with weighted estimation, or the mi prefix for multiply imputed data. In these
cases, practitioners will have to apply it by hand. For the slope coefficient of the tradez

predictor, this comes down to approximating the degrees of freedom using the m − l − 1 rule
(which gives 9 in this case), collecting the t-value from mixed output (which is 2.01 in this
example) and plugging in both to the ttail command, which needs to be multiplied by 2 to
give a two-tailed test:

display ttail(9, 2.01) * 2

.07532804

The following remarks and recommendations may summarize this section:

1. Obtaining REML estimates in Stata is relatively straightforward for linear multilevel
models. While ML is the default estimator of the mixed command, simply adding the
option reml changes that.

2. Obtaining t-tests with degrees of freedom determined by the m − l − 1 heuristic can
only be implemented by hand. Yet, this is the most robust option that will also work
for weighted estimation, or multiply imputed data.

3. Alternatively, the dfmethod() option allows to approximate degrees of freedom by the
Satterthwaite or Kenward Roger methods.
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