One-Dimensional Table of Frequences and/or Percentages¶
Description¶
Table
is a generic function that produces a table of counts or weighted counts and/or
the corresponding percentages of an atomic vector, factor or "item.vector"
object.
This function is intended for use with Aggregate
or genTable
. The
"item.vector"
method is the workhorse of codebook
.
Usage¶
## S4 method for signature 'atomic'
Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...)
## S4 method for signature 'factor'
Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...)
## S4 method for signature 'item.vector'
Table(x,weights=NULL,counts=TRUE,percentage=(style=="codebook"),
style=c("table","codebook","nolabels"),
include.missings=(style=="codebook"),
missing.marker=if(style=="codebook") "M" else "*",...)
Arguments¶
x
-
an atomic vector, factor or
"item.vector"
object counts
-
logical value, should the table contain counts?
percentage
-
logical value, should the table contain percentages? Either the
counts
or thepercentage
arguments or both should beTRUE
. style
-
character string, the style of the names or rownames of the table.
weights
-
a numeric vector of weights of the same length as
x
. include.missings
-
a logical value; should missing values included into the table?
missing.marker
-
a character string, used to mark missing values in the table (row)names.
...
-
other, currently ignored arguments.
Value¶
The atomic vector and factor methods return either a vector of counts or vector of
percentages or a matrix of counts and percentages. The same applies to the
"item.vector"
vector method unless include.missing=TRUE
and percentage=TRUE
,
in which case total percentages and percentages of valid values are given.
Examples¶
with(as.data.frame(UCBAdmissions),Table(Admit,Freq))
Admitted Rejected
1755 2771
Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions)
Gender Dept Admitted Rejected
1 Male A 512 313
2 Female A 89 19
3 Male B 353 207
4 Female B 17 8
5 Male C 120 205
6 Female C 202 391
7 Male D 138 279
8 Female D 131 244
9 Male E 53 138
10 Female E 94 299
11 Male F 22 351
12 Female F 24 317
A <- sample(c(1:5,9),size=100,replace=TRUE)
labels(A) <- c(a=1,b=2,c=3,d=4,e=5,dk=9)
missing.values(A) <- 9
Table(A,percentage=TRUE)
Counts Percent
a 25.00000 29.41176
b 16.00000 18.82353
c 18.00000 21.17647
d 17.00000 20.00000
e 9.00000 10.58824